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a b s t r a c t

Based on three-dimensional theory, this paper investigates the axisymmetric bending of transversely iso-
tropic and functionally graded circular plates subject to arbitrarily transverse loads using the direct dis-
placement method. The material properties can arbitrarily vary along the thickness of the plate. The
transverse load is expanded in the Fourier–Bessel series and superposition principle is then used to
obtain the total response based on the results of each item of the series. For one item of the series of
the load, we assume the distributions of the displacements in the radial direction and therefore only
the distributions of the displacements in thickness direction are required to find. If the material proper-
ties vary in an exponential law, the exact solutions can be obtained for elastic simple support and rigid
slipping support, which are satisfied on the every point of the boundaries. Moreover, the analytical solu-
tions are also presented for simply supported and clamped conditions, which are satisfied using Saint
Venant principle. Simultaneously, through the layerwise method a semi-analytical solution is proposed
for the case of arbitrary variation of the material properties. Finally the numerical examples are presented
to verify the proposed method.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The bending of circular plates is the classical problem in the
theory of elasticity. Circular plates are also applied widely in many
fields. It is therefore attracted much researchers’ attention for a
considerable time. Recently functionally graded materials (FGMs),
whose properties continuously varied with respect to the coordi-
nates, have been developed to overcome the problem associated
with the interfaces in traditional composite materials due to the
abrupt change of the materials properties. The theory of plates
are usually extended to study the FGM plates since they are very
successful in homogeneous plates. For instance, Reddy et al. [1]
studied the axisymmetric bending of FGM circular and annular
plates and presented the relation of the Mindlin plate theory be-
tween Kirchhoff plate theory. After that, Reddy [2] also gave a finite
element method for FGM plates based on the cubic shear deforma-
tion plate theory. Ma and Wang [3] investigated the axisymmetric
bending and buckling of FGM circular plates and also presented the
relation of the plate theory of three order shear deformation be-
tween the Kirchhoff plate theory. Najafizadeh and Heydari [4,5]
obtained the closed form solution of the buckling of FGM circular
plates subject to uniform loads in radial direction using variational

principle based on the plate theory of high order shear deforma-
tion. The meshless method was also employed to investigate the
statical and dynamical behavior of FMG plates based on the Mind-
lin plate theory by Sladek et al. [6]. Using Mindlin–Reissner plate
theory, Nosier and Fallah [7] obtained the analytical solution of
the axisymmetric and asymmetric behavior of FGM circular plates
with various clamped and simply supported boundary conditions
under mechanical and thermal loadings. Saidi et al. [8] explored
the axisymmetric bending and buckling of FGM circular plate using
three order shear deformation plate theory.

Apart from these above mentioned methods based on the the-
ory of plates, Zhong and Shang [9] firstly presented the three-
dimensionally exact solution of FGM plates using the state space
method. Kashtalyan [10] also obtained the three-dimensionally
elastic solution of FGM plates through the general solution of inho-
mogeneous media. Ootao and Tanigawa [11] presented a three-
dimensional solution for transient thermal stresses of an orthotro-
pic functionally graded rectangular plate. Xu and Zhou [12] ob-
tained the three-dimensional elasticity solution of functionally
graded rectangular plates with variable thickness. However, these
methods are only available for the rectangular plates with four
simply supported edges and the exponential distribution of mate-
rial. Recently, Li et al. [13] presented the solution of pure bending
of FGM circular plates using stress function based on three-dimen-
sional theory of elasticity. Li et al. [14,15] also obtained the elastic
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solution of the axisymmetric bending of circular and annular plates
subject to the polynomial loads of even order. Li et al. [16] also ex-
tended the above method to analyze functionally graded magneto–
electro-elastic circular plates subjected to uniform load. Yang et al.
[17] also presented an analytical solution of the bending of annular
plates under uniform loading. Nie and Zhong [18] analyzed the free
vibration of functionally annular sectorial plates using a semi-ana-
lytical method. Kordkheili and Naghdabadi [19] and Bagri and
Eslami [20] investigated thermoelastic problems of functionally
graded annular/circular plates. To authors’ knowledge, no analyti-
cal solution is found for the bending of FGM circular plates subject
to arbitrarily axisymmetric transverse load based on three-dimen-
sional theory of elasticity.

For this purpose, this work investigates the axisymmetric bend-
ing of transversely isotropic and functionally graded circular plates
subject to arbitrarily transverse loads using the direct displace-
ment method. The material properties can arbitrarily vary along
the thickness of the plate. If the material properties vary in an
exponential law, the exact solutions are obtained for two boundary
conditions, which are elastic simple support and rigid slipping sup-
port. Moreover, the analytical solutions are also presented for sim-
ply supported and clamped conditions. Simultaneously, a
layerwise model is introduced and a semi-analytical solution is
proposed for the case of arbitrary variation of the material proper-
ties. Finally the numerical examples are presented to verify the
proposed method.

2. Formulation

2.1. The governing equations of axisymmetry

Fig. 1 shows a transversely isotropic FGM circular plate of a ra-
dius a, thickness h. The isotropic plane is parallel to the middle
plane of the plate. The origin of the coordinates is located on the
center of the top surface of the plate. Since all the physical quanti-
ties are independent on h in the cylindrical coordinates ðr; h; zÞ, the
equilibrium equations and the relations of stresses and displace-
ments can be rewritten as
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in which rij and ui are the stresses and displacements, respectively,
cij denotes the elastic coefficients, which vary along the thickness of
the plate only, i.e., cij ¼ cijðzÞ.

For the non-dimensionalized formulations, the following
dimensionless quantities are introduced

n ¼ r=a; f ¼ z=h; u ¼ ur=h; w ¼ uz=h; s ¼ h=a

rn ¼ rrr=c; rh ¼ rhh=c; rf ¼ rzz=c; snf ¼ rrz=c; �cij ¼ cij=c

ð3Þ

where c is a constant with the dimension of stress, for instance, it
can be taken c ¼ c11ð0Þ. Then Eqs. (1) and (2) can be rewritten as
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2.2. The expansion of the transverse loads

The transverse load acted on the top and bottom surfaces of the
plate is denoted by PðnÞ. According to the Fourier–Bessel expansion
law [21], if k1; k2; k3; . . ., denote the positive roots of J0ðkÞ ¼ 0 or
J1ðkÞ ¼ 0 arranged in ascending order of magnitude, we have

PðnÞ ¼
X1
i¼1

CiJ0ðkinÞ ð6Þ

where the coefficients Ci is

Ci ¼
2
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R 1
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2
½J0ðkiÞ�2
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where JlðkinÞ ðl ¼ 0;1Þ is the first kind Bessel function of order l.
Thus, if the solution of the load in the form CiJ0ðkinÞ is obtained,
the bending of arbitrary transverse axisymmetric loads can be
investigated through the superposition principle. As a result, we as-
sume that the normal distribution load acted on the surfaces of the
plate has the form CiJ0ðkinÞ. In the following derivation, we use the
symbol k to represent ki for the sake of conciseness.

2.3. Direct displacement method

We assume that the two displacements are

u ¼ J1ðknÞf ðfÞ þ nu1ðfÞ; w ¼ J0ðknÞgðfÞ þw0ðfÞ þ n2w2ðfÞ ð8Þ

where f ðfÞ; gðfÞ;u1ðfÞ;w0ðfÞ and w2ðfÞ are the unknown and called
displacement functions.

Substitution of Eq. (8) into Eq. (5) yields
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where the prime denotes the derivative with respect to f and

GðfÞ ¼ �c33g0 þ sk�c13f ; FðfÞ ¼ �c44ðf 0 � skgÞ ð10Þ

Substituting Eq. (9) into Eq. (4) gives

fs�1F 0 � kðsk�c11f þ �c13g0ÞgJ1 þ nfs�1½�c44ðu01 þ 2sw2Þ�0

þ 2�c13w02g ¼ 0 ð11Þ
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Fig. 1. FGM circular plate and coordinates system.
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