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a b s t r a c t

In this paper, the buckling behaviour of single-walled carbon nanotubes (CNTs) is revisited by resorting to
Donnell and Sanders shell models, which are put in parallel and shown to lead to very distinct results for
CNTs with small aspect ratio (length-to-diameter). This paper demonstrates inability of the widely used
Donnell shell theory while it shows the validity and accuracy of the Sanders shell theory in reproducing
buckling strains and mode shapes of axially compressed CNTs with small aspect ratios. The results
obtained by the later shell theory are close to molecular dynamics simulation results.The Sanders shell
theory could capture correctly the length-dependent buckling strains of CNTs which the Donnell shell
theory fails to achieve. In view of this study, researchers should adopt the Sanders thin shell theory from
hereon instead of the Donnell theory when analyzing CNTs with small aspect ratios.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

It is generally accepted that molecular dynamics (MD)
simulations provide good predictions of the mechanical behaviour
of carbon nanotubes (CNTs) under external forces. However, MD
simulations take an awfully long time to produce the results, espe-
cially when dealing with long and multiple walled CNTs incorpo-
rating a large number of atoms. This spurred researchers to
explore the use of continuum beam and shell theories to model
CNTs as an alternative tool. Many papers on this topic have since
been published over the last decade (see a literature survey paper
by Wang et al. [1]). Regarding shell theories for CNTs, the great
majority of the works published in the past (e.g., [2]) and recently
(e.g., [3]) were based on the Donnell shell theory due to its inherent
simplicity and ability to accommodate new constitutive relations
(non-local) and the influence of several parameters (van der Waals
forces, elastic media).

Recently, Zhang et al. [4] performed a rigorous assessment exer-
cise on the validity and accuracy of the Euler Bernoulli beam model
and Donnell cylindrical shell model and their non-local counter-
parts in predicting the buckling strains of single-walled CNTs. By
comparing with MD simulation results conducted at room temper-
ature, they concluded that

� The simple Euler–Bernoulli beam model is sufficient for predict-
ing the buckling strains of CNTs with large aspect ratios (i.e.
length to diameter ratio L/d > 10).
� The more refined Timoshenko beam model or non-local beam

theory is needed for CNTs with intermediate aspect ratios (i.e.
8 < L/d < 10).
� The Donnell thin shell theory is unable to capture the length-

dependent critical strains obtained by MD simulations for CNTs
with small aspect ratios (i.e. L/d < 8) and hence this simple shell
theory is unsatisfactory in modelling small aspect ratio CNTs.

In view of the last conclusion, many researchers tried to im-
prove the Donnell thin shell theory for the buckling analysis of
short CNTs. The great majority of works attributed this lack of
accuracy to the inadequate modelling of CNT constitutive relations.
At atomic length scale the material microstructure becomes
increasingly important and small scale effects cannot be ignored.
In order to improve the CNT constitutive relations, many authors
[5–8] adopted Eringen’s equations of non-local elasticity and incor-
porated them into several continuum models. The use of non-local
elasticity relations in either Euler–Bernoulli or Timoshenko beam
models were shown to be accurate for long CNTs [9]. However,
the incorporation of non-local elasticity relations into the Donnell
shell model was shown to provide more accurate results [6,8], but
unexpected discrepancies between the results and MD simulations
still remain due to the unknown (and widely scattered) values of
non-local constant e0. As it will be explained in this paper, the main
reason for the inaccuracy of Donnell shell model is the inadequate
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kinematic hypotheses underlying it, either using the model with
local or non-local elasticity relations. In this paper, we show that
the inaccuracy of Donnell shell model is mostly due to the inade-
quacy of kinematic simplifying assumptions. We investigate the
use of the more refined Sanders cylindrical thin shell theory for
modelling the buckling behaviour of CNTs with small aspect ratios.
The Sanders thin shell model results are compared with the Don-
nell shell model results and validated against MD simulations re-
sults. It will be shown herein how surprising well the Sanders
shell theory is able to reproduce buckling strains of CNTs that are
length dependent as well as mode shapes that are relatively close
to those predicted by MD simulations.

2. Revisiting Donnell and Sanders shell theories

Let us consider a circular cylindrical shell (see Fig. 1) of radius R
with the cylindrical coordinate system (x, z, h), having the origin O
at the centre of one end of the shell – longitudinal coordinate
x 2 [0; L], circumferential coordinate h 2 [0; 2p], radial coordinate
z 2 [�h/2; +h/2]. The displacements of an arbitrary point of coordi-
nates (x, h) on the mid-surface of the shell are denoted by u, v and
w, in the longitudinal, circumferential and radial directions,
respectively.

In order to compare the results obtained from continuum
mechanics and MD simulations, two different strain–displacement
relationships for thin shells are used in the present study. These
two different strain–displacement relationships are associated
with the Donnell [10] and Sanders [11] theories of thin shells
[12–15]. Both are based on Love’s first approximation assump-
tions: (i) the shell thickness h is small with respect to the radius
of curvature R of the mid-plane, (ii) strains are small, (iii) trans-
verse normal stress is small and (iv) the Kirchhoff–Love kinematic
hypothesis, in which it is assumed that the normal to the unde-
formed middle surface remains straight and normal to the mid-
surface after deformation, and undergoes no thickness stretching.
For both Donnell and Sanders theories, the effect of transverse
shear deformations are neglected. According to these shell theo-
ries, the strain components ex, eh and cxh at an arbitrary point of
the shell are given by
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1
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where z is the distance of the arbitrary point of the shell from the
mid-surface, bh is the rotation in the direction perpendicular to

the Rh–z plane (about x-axis) and b is the rotation in the direction
perpendicular to the Rh–x plane (about z-axis), that is the z-rotation
of a fibre orthogonal to the shell mid-surface. These two terms (bh

and b) play a crucial role in the results obtained from both theories.
In the Donnell shell theory, these two rotations have the simpli-

fied form [10]

bh ¼ �
w;h

R
ð4Þ

b ¼ 0 ð5Þ

It is seen that (i) the rotation in the direction perpendicular to
the Rh–z plane (about x-axis) only depends on w and (ii) the rota-
tion in the direction perpendicular to the Rh–x plane (about z-axis)
is deemed null. This last assumption considers that the rotation of
a fibre orthogonal to the shell mid-surface about itself is null.

By introducing the expressions (4) and (5) into the strain–
displacement relationships (1)–(3), it is shown that both
curvatures (linear terms multiplied by z) and non-linear terms only
depend on the radial w-displacement. Since the u and v displace-
ments only appear in the membrane strain components (linear
terms not multiplied by z), these displacements are assumed to
be infinitesimal. The trademark of Donnell’s theory is that (i) the
shell non-linear behaviour (geometric stiffness) and (ii) bending
behaviour only depend on the displacement of w, which leads to
that Donnell’s theory is designated for shallow shells. It is well
known (e.g., [13]) that the set of differential equations of Donnell’s
theory for shallow shells under uniform compression is given by

R2u;xx þ
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where D = Eh3/12(1 � m2) is the shell flexural rigidity, C = Eh/(1 � m2)
the shell membrane rigidity, E the Young’s modulus, m the Poisson
ratio, h the shell thickness, R the shell radius and rx the applied
compressive stress, respectively. It is also known that the coupled
system of Eqs. (6)–(8) can easily be transformed into the following
set of three uncoupled equations [13],
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The well-known Eq. (11) is seen to be an homogeneous linear
equation of w alone. After solving Eq. (11) for w, the membrane dis-
placements u and v can be determined from Eqs. (9) and (10). This
is the major advantage of Donnell’s theory of shells, whose equa-
tions can be easily solved and exact analytical solutions can be ob-
tained. This is the main reason why Donnell shell theory has been
extensively used for CNT analysis.

In the Sanders shell theory, these two rotations have the exact
and complete form [11]
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Fig. 1. Shell coordinate system and displacement components.
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