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a b s t r a c t

This paper is concerned with the theoretical treatment of transient thermoelastic problem involving a
multilayered hollow sphere with piecewise power law nonhomogeneity due to uniform heat supply.
The thermal and thermoelastic constants of each layer are expressed as power functions of the radial
coordinate, and their values continue on the interfaces. We obtain the exact solution for the one-dimen-
sional temperature change in a transient state, and thermoelastic response. Some numerical results for
the temperature change, the displacement and the stress distributions are shown in figures.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) are nonhomogeneous
material systems that two or more different material ingredients
change continuously and gradually. In recent years, the concept
of FGMs has been applied in many industrial fields in addition
to the aerospace field [1,2]. When FGMs are used under high tem-
perature conditions or are subjected to several thermal loading, it
is necessary to analyze the thermal stress problems for FGMs. It is
well-known that thermal stress distributions in a transient state
can show large values compared with the one in a steady state.
Therefore, the transient thermoelastic problems for FGMs become
important. The governing equations for the temperature field and
the associate thermoelastic field of FGMs become of nonlinear
form in generally, the analytical treatment is very difficult. As
the analytical treatment of the thermoelastic problems of FGMs,
there are two pieces of treatment mainly. One is introducing the
theory of laminated composites, which have a number of homoge-
neous layers along the thickness direction. Using the theory of
laminated composites, we analyzed theoretically the transient
thermal stress problems of several analytical models, i.e. hollow
cylinders [3–6], plates [7,8] and hollow spheres [9,10]. Sugano
et al. reported an approximate three-dimensional analysis of
thermal stresses in a nonhomogeneous plate with temperature
change and nonhomogeneous properties only in the thickness
direction [11] and an one-dimensional analysis of transient
thermal stress in a circular plate with arbitrary variation of heat-
transfer coefficient [12].

The other analytical treatment is the exact analysis under the
assumption that the material properties are given in the specific
functions containing the variable of the thickness coordinate
without using the laminated composite model. As the exact
treatment without laminated composite models, Sugano analyzed
exactly one-dimensional transient thermal stresses of nonhomo-
geneous plate where the thermal conductivity and Young’s mod-
ulus vary exponentially, whereas Poisson’s ratio and the
coefficient of linear thermal expansion vary arbitrarily in the
thickness direction [13]. Vel and Batra analyzed the three-dimen-
sional transient thermal stresses of the functionally graded rect-
angular plate [14]. We analyzed the transient thermal stress
problems of a functionally graded circular plate [15], a function-
ally graded thick strip [16] and a functionally graded rectangular
plate [17], where the thermal conductivity, the coefficient of lin-
ear thermal expansion and Young’s modulus vary exponentially
in the thickness direction, due to nonuniform heat supply. On
the other hand, examples of thermal buckling problems are as fol-
lows. Shariat and Eslami analyzed buckling of thick functionally
graded plates under mechanical and thermal loads using the third
order shear deformation theory [18]. Matsunaga analyzed ther-
mal buckling of functionally graded plates using a 2D higher-or-
der deformation theory [19]. Saidi and Baferani analyzed
thermal buckling of moderately thick functionally graded annular
sector plates using the first order shear deformation plate theory
[20].

As exact analysis for shell type structures, the one-dimensional
solutions for transient thermal stresses of functionally graded
hollow cylinders and hollow spheres whose material properties
vary with the power product form of radial coordinate variable
were obtained [21,22]. Zhao et al. analyzed the one-dimensional
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transient thermo-mechanical behavior of a functionally graded
solid cylinder, whose thermoelastic constants vary exponentially
through the thickness [23]. Shao et al. analyzed one-dimensional
transient thermo-mechanical behavior of functionally graded
hollow cylinders, whose thermoelastic constants are expressed as
Taylor’s series [24]. For the case of nonuniform distributed heating,
Shao et al. obtained the analytical solutions for transient thermo-
mechanical response of functionally graded cylindrical panels
[25] and functionally graded hollow cylinders [26]. We obtained
the two-dimensional analytical solution for transient thermal
stresses of a functionally graded cylindrical panel whose material
properties vary with the power product form of radial coordinate
variable [27]. However, these studies discuss the thermoelastic
problems of one-layered FGM models, which have the big limita-
tion of nonhomogeneity. On the other hand, the arbitrary nonho-
mogeneity can be expressed in the theory of laminated
composites approximately, but the material properties are discon-
tinuous on the interfaces.

From the viewpoint of above mentioned, we analyze the tran-
sient thermoelastic analysis for a multilayered hollow sphere with
piecewise power law nonhomogeneity as a new FGM model with
arbitrary properties.

2. Analysis

Consider a multilayered hollow sphere with piecewise power
law nonhomogeneity. The thermal and thermoelastic constants
of each layer are expressed as power functions of the radial coordi-
nate, and their values continue on the interfaces. The multilayered
hollow sphere’s inner and outer radii are defined ra and rb, respec-
tively. Moreover, ri is the outer radius of ith layer.

2.1. Heat conduction problem

It is assumed that the multilayered hollow sphere is initially at
zero temperature and is suddenly heated from the inner and outer
surfaces by surrounding media of constant temperatures Ta and Tb

with the relative heat-transfer coefficients ha and hb. Then the tem-
perature distribution shows a one-dimensional distribution, and
the transient heat conduction equation for the ith layer is taken
in the following forms:
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The thermal conductivity ki and the heat capacity per unit vol-
ume ciqi in each layer are assumed to take the following forms:
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Substituting Eqs. (2) and (3) into Eq. (1), the transient heat
conduction equations in dimensionless form are
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The initial and thermal boundary conditions in dimensionless
form are

s ¼ 0; Ti ¼ 0; i ¼ 1;2; . . . ;N ð6Þ
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In Eqs. (4)–(10), we have introduced the following dimension-
less values:
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where Ti is the temperature change; t is time; and T0, k0, c0q0 and j0

are typical values of temperature, thermal conductivity, heat capac-
ity per unit volume and thermal diffusivity, respectively. Introduc-
ing the Laplace transformation with respect to the variable s, the
solution of Eq. (5) can be obtained so as to satisfy the conditions
(6)–(10). This solution is shown as follows:
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where Jx() and Yx() are the Bessel functions of the first and second
kind of order x, respectively. And D and F are the determinants of
2N � 2N matrix [akl] and [ekl], respectively; the coefficients Ai and
Bi are defined as the determinant of the matrix similar to the coef-
ficient matrix [akl], in which the (2i� 1)th column or 2ith column is
replaced by the constant vector {ck}, respectively. Similarly, the
coefficients A0i and B0i are defined as the determinant of the matrix
similar to the coefficient matrix [ekl], in which the (2i� 1)th column
or 2ith column is replaced by the constant vector {ck}, respectively.
The nonzero elements of the coefficient matrices [akl], [ekl] and the
constant vector {ck} are given as
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