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a b s t r a c t

The variational-asymptotic-method (VAM) provides a mathematically rigorous way to reduce a three-
dimensional elasticity formulation to a one-dimensional beam theory without ad hoc assumptions. In this
work, the VAM is employed to develop a beam theory to analyze the in-plane deformation of a laminated
strip-beam with initial in-plane curvature. The cross-sectional stiffness constants and recovery relations for
stress and strain are presented as analytical expressions. For the case of zero initial curvature, consistency of
the expressions with those of plate theory is demonstrated. For strip-beams with initial curvature in the in-
plane direction, results obtained show explicit dependence on the curvature. Results are verified by com-
parison with those obtained from VABS, the accuracy and consistency of which with three-dimensional
finite elements has been reported in several published works. In addition to the internal consistency check
this work provides and its utility in helping to validate VABS (which is based on the principles of VAM), it is
hoped that the results obtained herein, since they are all analytical expressions, will help researchers and
engineers validate the effect of initial curvature in their beam theories, whether existing or new.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The advent of composite materials has revolutionized the field
of structural engineering, most notably due to their high
strength-to-weight ratio and their directional tailorability. Model-
ing of structures with one dimension significantly larger than the
other two as beams results in a much simpler mathematical for-
mulation and helps save computational costs. With the advent of
composites and structural members with initial twist/curvature,
particularly in the field of aerospace engineering, using beam
theories based on traditional approaches/ideas will not yield accu-
rate results. Modeling of slender structural members with initial
curvature is thus of paramount importance. The VAM provides a
rigorous framework to model such structures without ad hoc
assumptions regarding their deformation. The deformation is
expressed in terms of an unknown set of warping functions, which
is extracted using an asymptotic analysis of the variational
problem using the system’s inherent small parameters. The
computer program VABS (Variational Asymptotic Beam Section)
is constructed on the principles of the VAM.

One of first significant works concerning VABS was that of Ref.
[1]. By the early 2000s, with the work of Ref. [2], VABS was estab-
lished as an analysis tool of good standing in the circles of both
academia and industry. Recent updates and developments to VABS
are discussed in detail in [3,4]. Though novel ideas are not lacking in
some of the beam theories in the current literature, the capability
and generality of a VAM framework has maintained the superiority
of VABS, subsequently making it a popular analysis tool for
helicopter blades and wind turbines. Since then several efforts
have contributed to the validation and verification of VABS results,
and this paper is one such effort.

In this work, we propose a beam theory to analyze the in-plane
deformation of an initially curved laminated strip-beam. A beam
theory must address the following three aspects: a cross-sectional
analysis leading to a stiffness matrix which is input into the 1D
analysis, the 1D analysis itself, and the formulae or procedure to
recover stress, strain and 3D displacement. This paper is organized
as follows: Section 2 outlines the theoretical development leading
to the results for the first and third aspects described previously.
Section 3 demonstrates extraction of some stiffness terms using
an equivalent plate theory. Section 4 validates the current work
using results from VABS. Finally, conclusions are drawn.

2. Beam theory

Consider a laminated strip beam with initial curvature k3 = 1/R
as shown in Fig. 1. This section deals with the development of a
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beam theory to describe the in-plane deformation of such a struc-
tural member. In the undeformed configuration, for a given axial
coordinate (x1), the unit vectors b1 and b2 are defined to be tangent
to the reference line and perpendicular to it as shown. Two frames
of reference are used in the analysis to describe the deformed con-
figuration. The 1D generalized strain measures associated with the
frame of reference in which one of its unit vectors is tangent to the
reference line are c11 and j3. On the other hand, those associated
with the frame of reference in which one of its unit vectors is nor-
mal to the cross section are c11, j3 and 2c12; geometrically exact
expressions for both of these measures may be found in [5]. The
kinematics development parallels that of [3], and the reader is ad-
vised to go through this reference for a complete description of the
kinematics of this problem. Consequently, the strain expressions
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are obtained, where the square root of the metric tensor of the
undeformed state is given byffiffiffi
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and where w1 and w2 are the unknown warping displacements. The
problem we are dealing with is a plane stress problem; hence,
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Consequently the strain energy per unit length is
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where h i denotes an integration over the cross-section. Now define:
Aij ¼

R t=2
�t=2 Cij dx3, i.e., an integration through the thickness, which

can also be written as a summation over the various layers of the
laminate (after appropriate coordinate transformations). One there-
fore can write the strain energy per unit length to be
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This completes the formulation of the variational aspect of the
problem. The current unknowns in the problem are the warping
field. An attempt to solve this using standard variational principles
will lead to the same difficulties as the corresponding elasticity
problem. The solution of the problem is now carried out using
asymptotic methods. One does this by identifying the inherent
small parameters of the system: c/l and ck3 which are assumed
to be OðrÞ. Also the maximum strain (maxðc11; cj3Þ ¼ Oð�Þ) is as-
sumed to be small compared to unity. Before we proceed further,
we define the following quantities which will be used in later
analysis:
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The first step of the VAM is a zeroth-order or classical analysis
where all terms OðrÞ are ignored in the strain energy. The warping
is assumed to be of order Oðc�Þ, and its subsequent solution justifies
this assumption. Standard procedures of calculus of variations yield
the warping as
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The classical strain energy per unit length is thus
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We then proceed to an analysis one order higher. This is done by
perturbing the warping with terms of Oðrc�Þ. The resulting minimi-
zation problem leads to a set of Euler–Lagrange equations, which
can be solved for the first-order warping
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Once the first-order warping is determined, the asymptotically cor-
rect second-order strain energy per unit length can be obtainedFig. 1. Schematic of the composite strip beam with initial in-plane curvature.
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