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a b s t r a c t

Through a laminated plate model, a recursive formulation for the method of reverberation-ray matrix
(MRRM) is proposed for the analysis of free wave propagation in an elastic plate with material properties
varying along the thickness direction. In contrast to the traditional MRRM, the present new formulation
behaves well for high frequency computation, while the heavy computational cost of storage and memory
can also be cut down. Numerical examples are given to analyze dispersion characteristics of waves in FGM
plates, and the comparison among traditional MRRM and the recursive formulation demonstrates the
significant efficiency of the proposed recursive formula.
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1. Introduction

Functionally graded materials (FGMs), such as particulate com-
posites with continuously varying properties, were first designed
for the purpose of reducing residual and thermal stresses and
increasing the bonding strength in thermal-protection problems.
Since then FGMs have gained widespread applicability in many
fields such as aeronautics, astronautics, nuclear, biology, naviga-
tion, etc. [1–5]. Since good understanding of the material proper-

ties will make the use of FGMs more effective, the characteristic
evaluation of the FGMs has long been a research subject. Aside
from traditional laboratory testing methods based on the method
of strength of materials, ultrasonic technique is another reliable
method employed for material characterization. Therefore, more
detailed study of wave propagation in FGMs is of considerable
importance. However, it is generally very difficult to obtain exact
analytical solutions for wave propagation in FGM structures except
for a few special cases, since the material properties vary with the
coordinates, adding obvious complexity to the governing equa-
tions. Hence, an appropriate multilayered model is usually applied
to deal with the problems [6–10]. Actually the results will be accu-
rate enough if there are adequate layers involved in the approxi-
mate laminate model.
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There have been extensive reports on wave propagation prob-
lems related to multilayered solids [11–16]. Various matrix formu-
lations have been developed. The method of transfer matrix (MTM)
formulated by Thomson [17] and slightly modified by Haskell [18]
was soon widely applied for evaluating wave transmission in mul-
tilayered solid media. To overcome the inherent computational
instabilities of MTM, a stiffness matrix method (SMM) using a layer
stiffness matrix has been obtained for an isotropic medium by
Kaussel and Roesset [19]. The spectral element method (SEM) orig-
inated from an analysis of wave propagation in bar and beam
structures [20] could be an alternative approach.

Recently, a new matrix formulation method called the method
of reverberation-ray matrix (MRRM), which was first developed
by Pao et al. for studying transient waves in frames [21,22], has
been successfully extended to analysis of wave propagation in lay-
ered isotropic solids [23], transversely isotropic laminas [24] and
functionally graded elastic plates [25]. The calculation of disper-
sion curves in [25] demonstrates that MRRM possesses predomi-
nance in numerical stability compared to the conventional
displacement method or the state-space method. However, with
the increase of layer number in the approximate laminate model,
the dimension of the reverberation-ray matrix in MRRM becomes
larger, and hence, reducing its computational efficiency. The recent
advances of MRRM can be found in the review papers by Pao et al.
[26,27].

In this paper, we develop a recursive formulation (denoted as
RF) of MRRM, which has the same dimension as the transfer matrix
when the number of the layers increases. The recursive formula-
tion is illustrated to investigate the dispersion behavior of waves
in the FGM plates. Several numerical examples are performed,
which demonstrate that the recursive formulation is uncondition-
ally stable and more computationally efficient than the traditional
MRRM.

2. Elastic waves in FGM plates

Consider an FGM plate with varying material properties in the
thickness direction, as shown in Fig. 1. The total thickness is
denoted by h. Since it is very difficult to obtain analytical solutions
to the governing equations for wave propagation in an inhomoge-
neous plate, the plate can be equally divided into a multilayered
plate, consisting of n layers, each with constant material proper-
ties. A global right-handed coordinate system (x,y,z) is adopted
for the whole multilayered plate, whose origin is assumed to be lo-
cated at the top surface. The individual layers are indicated by cap-
ital letters I, J, K. . ., and the upper and lower surfaces of a typical
layer, for instance the Jth layer with thickness hJ, are designated
as the I and J(I + 1), respectively.

According to the elastodynamics theory [28], the differential
equations governing the motion of an isotropic body with k and
l being the Lamé constants are

ðkþ lÞrðr � uÞ þ lr2u ¼ q@2u=@t2 ð1Þ

where u = [u,v,w]T is the displacement vector, q is the material den-
sity, r and r2 are respectively the gradient operator and three-
dimensional Laplacian. The constitutive relations are

r ¼ kðr � uÞIþ lðruþ urÞ ð2Þ
where r is the stress tensor, I is the unit dyadic. According to Helm-
holtz theorem, the displacement field can be divided into an irrota-
tional part and a rotational part as

u ¼ r/þr� w; r � w ¼ 0 ð3Þ
where / is the scalar potential, and w is the vectorial potential.

For plane strain problem, the displacement field u = [u,0,w]T

with the zero component in the y-direction, and the stress compo-
nents r are determined from the potentials / and w as

u ¼ @/
@x
� @w
@z

; w ¼ @/
@x
þ @w
@z

ð4Þ

and

sxz ¼ l 2
@2/
@x@z

þ @
2w
@x2 �

@2w
@z2

 !
;

rzz ¼ kr2/þ 2l @2/
@z2 þ

@2w
@x@z

 !
ð5Þ

where

c2
pr2/ ¼ @2/=@t2; c2

sr2w ¼ @2w=@t2 ð6Þ

in which r2 = @2/@x2 + @2/ oz2 is the two-dimensional Laplacian,
cp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2lÞ=q

p
and cs ¼

ffiffiffiffiffiffiffiffiffi
l=q

p
are respectively the velocities of

P-wave and S-wave, and w is the non-zero component in w, which
has no dependence on y in this case.

Substituting the assumed wave solutions

/ðx; z; tÞ ¼ /̂ðzÞeiðkx�xtÞ; wðx; z; tÞ ¼ ŵðzÞeiðkx�xtÞ ð7Þ

into Eq. (6) gives

d2/̂ðzÞ
dz2 þ a2

p/̂ðzÞ ¼ 0; ap ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2=c2

p � k2
q

;

d2ŵðzÞ
dz2 þ b2

s ŵðzÞ ¼ 0; bs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2=c2

s � k2
q ð8Þ

where k is the wave number in the x-direction, ap and bs are the
waves numbers in the z-direction of P-wave and S-wave, respec-
tively. Then the solutions to Eq. (8) can be expressed respectively as

/̂ðzÞ ¼ a1eiapz þ d1e�iapz; ŵðzÞ ¼ a2eibsz þ d2e�ibsz ð9Þ

where ai and di(i = 1,2) are unspecified amplitudes of various waves.
Thus the displacements and stresses expressions in Eqs. (4) and (5)
can be rewritten as

uðx; z; tÞ ¼ ½ikða1eiapz þ d1e�iapzÞ � ibsða2eibsz � d2e�ibszÞ�eiðkx�xtÞ;

wðx; z; tÞ ¼ ½iapða1eiapz � d1e�iapzÞ þ ikða2eibsz þ d2e�ibszÞ�eiðkx�xtÞ;

ð10Þ
rzzðx; z; tÞ ¼ ½�lðb2

s � k2Þða1eiapz þ d1e�iapzÞ
� 2lkbsða2eibsz � d2e�ibszÞ�eiðkx�xtÞ;

sxzðx; z; tÞ ¼ ½�2lkapða1eiapz � d1e�iapzÞ
þ lðb2

s � k2Þða2eibsz þ d2e�ibszÞ�eiðkx�xtÞ ð11Þ

3. A recursive formulation for MRRM

Consider two adjacent layers, say the J and Kth layers, for illus-
tration. For each layer we select a set of dual local coordinates as
depicted in Fig. 2. The x-directions of the two coordinates are
the same, the y-directions are opposite to each other, and the
z-directions follow the right-handed rule. The two superscripts of
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Fig. 1. The approximate laminate model of a FGM plate.
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