A meshless local radial point collocation method for free vibration analysis of laminated composite plates

Song Xiang *, Guang-chao Li, Wei Zhang, Ming-sui Yang
School of Power and Energy Engineering, Shenyang Aerospace University, No. 37 Daoyi South Avenue, Shenyang, Liaoning 110136, People's Republic of China

ARTICLE INFO

Article history:

Available online 25 September 2010

Keywords:

Meshless
Local radial point collocation method
Free vibration
Laminated composite plates
Multiquadric
Radial basis function

Abstract

In this paper, a meshless local radial point collocation method based on multiquadric radial basis function is proposed to analyze the free vibration of laminated composite plates. This method approximates the governing equations based on first-order shear deformation theory using the nodes in the support domain of any data center. Natural frequencies of the laminated composite plates with various boundary conditions, side-to-thickness ratios, and material properties are computed by present method. The choice of shape parameter, effect of dimensionless sizes of the support domain on accuracy, convergence characteristics are studied by several numerical examples. The results are compared with available published results which demonstrate the accuracy and efficiency of present method.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Numerous scholars have investigated the meshless methods in recent years. Meshless methods can be categorized into three classes: meshless methods based on weak-forms, meshless methods based on collocation techniques, meshless methods based on the combination of weak-forms and collocation techniques [1]. Meshless methods based on collocation techniques include meshless global collocation method and meshless local collocation method. The meshless global collocation method approximates the solution of partial differential equations using all nodes in the problem domain. Ferreira et al. [2-9] and Xiang et al. [10-12] had used it to analyze the free vibration and static deformation of laminated composite plates. But global collocation method can result in fully populated coefficient matrices. To circumvent these difficulties a local collocation method which approximates the solution of partial differential equations using the nodes in the support domain of any data center has been proposed by Liu et al. [13-15], Lee et al. [16]. In Liu et al. [13], a local RBF collocation approach using a Hermite-type interpolation scheme was proposed to study the Cook's membrane problem. In the study of Liu et al. [14], a local radial point interpolation collocation method (RPICM) was presented to solve partial differential equations. The choice of shape parameter, the enforcement of additional polynomial terms, and the application of the Hermite-type interpolation were studied by several numerical examples. Liu et al. [15] proposed a stabilized local radial point collocation method (RPCM) based on least-squares

[^0]stabilization technique to perform adaptive analysis. Lee et al. [16] presented the local multiquadric and the local inverse multiquadric approximations to solve boundary value problems. A local radial basis function based gridfree scheme has also been developed to solve unsteady, incompressible Navier-Stokes equations in primitive variables by Sanyasiraju and Chandhini [17]. An improved localized radial basis function meshless method was developed for computational aeroacoustics by Li et al. [18].

This paper deals with the free vibration analysis of laminated composite plates by a meshless local radial point collocation method based on multiquadric radial basis function. The choice of shape parameter, effect of dimensionless sizes of the support domain on accuracy, convergence characteristics are studied by several numerical examples. The present results are compared with the previous literatures. The aim of the present paper is to explore the potential of meshless local radial point collocation method in the free vibration analysis of laminated composite plates.

2. Governing equations based on first-order shear deformation theory

Governing equations based on first-order shear deformation theory are as follows [20]:
$A_{11} \frac{\partial^{2} u}{\partial x^{2}}+2 A_{16} \frac{\partial^{2} u}{\partial x \partial y}+A_{66} \frac{\partial^{2} u}{\partial y^{2}}+A_{16} \frac{\partial^{2} v}{\partial x^{2}}+\left(A_{12}+A_{66}\right) \frac{\partial^{2} v}{\partial x \partial y}$

$$
+A_{26} \frac{\partial^{2} v}{\partial y^{2}}+B_{11} \frac{\partial^{2} \phi_{x}}{\partial x^{2}}+2 B_{16} \frac{\partial^{2} \phi_{x}}{\partial x \partial y}+B_{66} \frac{\partial^{2} \phi_{x}}{\partial y^{2}}+B_{16} \frac{\partial^{2} \phi_{y}}{\partial x^{2}}
$$

$$
\begin{equation*}
+\left(B_{12}+B_{66} \frac{\partial^{2} \phi_{y}}{\partial x \partial y}+B_{26} \frac{\partial^{2} \phi_{y}}{\partial y^{2}}=-I_{0} \omega^{2} u-I_{1} \omega^{2} \phi_{x}\right. \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& A_{16} \frac{\partial^{2} u}{\partial x^{2}}+\left(A_{12}+A_{66}\right) \frac{\partial^{2} u}{\partial x \partial y}+A_{26} \frac{\partial^{2} u}{\partial y^{2}}+A_{66} \frac{\partial^{2} v}{\partial x^{2}}+2 A_{26} \frac{\partial^{2} v}{\partial x \partial y} \\
& \quad+A_{22} \frac{\partial^{2} v}{\partial y^{2}}+B_{16} \frac{\partial^{2} \phi_{x}}{\partial x^{2}}+\left(B_{12}+B_{66}\right) \frac{\partial^{2} \phi_{x}}{\partial x \partial y}+B_{26} \frac{\partial^{2} \phi_{x}}{\partial y^{2}}+B_{66} \frac{\partial^{2} \phi_{y}}{\partial x^{2}} \\
& \quad+2 B_{26} \frac{\partial^{2} \phi_{y}}{\partial x \partial y}+B_{22} \frac{\partial^{2} \phi_{y}}{\partial y^{2}}=-I_{0} \omega^{2} v-I_{1} \omega^{2} \phi_{y} \tag{2}\\
& A_{55} \frac{\partial^{2} w}{\partial x^{2}}+2 A_{45} \frac{\partial^{2} w}{\partial x \partial y}+A_{44} \frac{\partial^{2} w}{\partial y^{2}}+A_{55} \frac{\partial \phi_{x}}{\partial x}+A_{45} \frac{\partial \phi_{x}}{\partial y}+A_{45} \frac{\partial \phi_{y}}{\partial x} \\
& \quad+A_{44} \frac{\partial \phi_{y}}{\partial y}=-I_{0} \omega^{2} w \tag{3}\\
& B_{11} \frac{\partial^{2} u}{\partial x^{2}}+2 B_{16} \frac{\partial^{2} u}{\partial x \partial y}+B_{66} \frac{\partial^{2} u}{\partial y^{2}}+B_{16} \frac{\partial^{2} v}{\partial x^{2}}+\left(B_{12}+B_{66}\right) \frac{\partial^{2} v}{\partial x \partial y} \\
& \quad+B_{26} \frac{\partial^{2} v}{\partial y^{2}}-A_{45} \frac{\partial w}{\partial y}-A_{55} \frac{\partial w}{\partial x}+D_{11} \frac{\partial^{2} \phi_{x}}{\partial x^{2}}+2 D_{16} \frac{\partial^{2} \phi_{x}}{\partial x \partial y} \\
& \quad+D_{66} \frac{\partial^{2} \phi_{x}}{\partial y^{2}}-A_{55} \phi_{x}+D_{16} \frac{\partial^{2} \phi_{y}}{\partial x^{2}}+\left(D_{12}+D_{66}\right) \frac{\partial^{2} \phi_{y}}{\partial x \partial y} \\
& \quad+D_{26} \frac{\partial^{2} \phi_{y}}{\partial y^{2}}-A_{45} \phi_{y}=-I_{1} \omega^{2} u-I_{2} \omega^{2} \phi_{x} \tag{4}\\
& B_{16} \frac{\partial^{2} u}{\partial x^{2}}+\left(B_{12}+B_{66}\right) \frac{\partial^{2} u}{\partial x \partial y}+B_{26} \frac{\partial^{2} u}{\partial y^{2}}+B_{66} \frac{\partial^{2} v}{\partial x^{2}}+2 B_{26} \frac{\partial^{2} v}{\partial x \partial y} \\
& \quad+B_{22} \frac{\partial^{2} v}{\partial y^{2}}-A_{44} \frac{\partial w}{\partial y}-A_{45} \frac{\partial w}{\partial x}+D_{16} \frac{\partial^{2} \phi_{x}}{\partial x^{2}}+D_{26} \frac{\partial^{2} \phi_{x}}{\partial y^{2}} \\
& \quad+\left(D_{12}+D_{66}\right) \frac{\partial^{2} \phi_{x}}{\partial x \partial y}-A_{45} \phi_{x}+D_{66} \frac{\partial^{2} \phi_{y}}{\partial x^{2}}+2 D_{26} \frac{\partial^{2} \phi_{y}}{\partial x \partial y} \\
& \quad+D_{22} \frac{\partial^{2} \phi_{y}}{\partial y^{2}}-A_{44} \phi_{y}=-I_{1} \omega^{2} v-I_{2} \omega^{2} \phi_{y} \tag{5}
\end{align*}
$$

where u, v, w, ϕ_{x} and ϕ_{y} are the unknown displacement components of middle surface of the plate. $A_{i j}, B_{i j}$ and $D_{i j}$ are the stiffness components. I_{i} are the mass inertias, ω is the natural frequency of free vibration.
$A_{i j}=\sum_{k=1}^{N_{L}} \int_{z_{k}}^{z_{k+1}} \bar{Q}_{i j}^{(k)} d z$
$B_{i j}=\sum_{k=1}^{N_{L}} \bar{Q}_{i j}^{(k)} \int_{z_{k}}^{z_{k+1}} z d z$
$D_{i j}=\sum_{k=1}^{N_{L}} \bar{Q}_{i j}^{(k)} \int_{z_{k}}^{z_{k+1}} z^{2} d z$
$I_{0}=\int_{-\frac{h}{2}}^{\frac{h}{2}} \rho d z, \quad I_{1}=\int_{-\frac{h}{2}}^{\frac{h}{2}} \rho z d z, \quad I_{2}=\int_{-\frac{h}{2}}^{\frac{h}{2}} \rho z^{2} d z$
where ρ denotes the material density, N_{L} is total number of layer, z_{k} and z_{k+1} are the lower and upper z coordinates of the k th layer, $\bar{Q}_{i j}^{(k)}$ are the transformed elastic coefficients defined as [20].

The boundary conditions for an arbitrary edge with simply supported and clamped supported are as follows.

Simply supported:
$x=0, \quad a: u=v=w=\phi_{y}=0, \quad M_{x}=0$
$y=0, \quad b: u=v=w=\phi_{x}=0, \quad M_{y}=0$
Clamped:
$u=v=w=\phi_{x}=\phi_{y}=0$
where

$$
\begin{align*}
M_{x} & =B_{11} \frac{\partial u}{\partial x}+B_{16} \frac{\partial u}{\partial y}+B_{12} \frac{\partial v}{\partial y}+B_{16} \frac{\partial v}{\partial x}+D_{11} \frac{\partial \phi_{x}}{\partial x}+D_{16} \frac{\partial \phi_{x}}{\partial y} \\
& +D_{16} \frac{\partial \phi_{y}}{\partial x}+D_{12} \frac{\partial \phi_{y}}{\partial y} \tag{12}\\
M_{y} & =B_{12} \frac{\partial u}{\partial x}+B_{26} \frac{\partial u}{\partial y}+B_{22} \frac{\partial v}{\partial y}+B_{26} \frac{\partial v}{\partial x}+D_{12} \frac{\partial \phi_{x}}{\partial x}+D_{26} \frac{\partial \phi_{x}}{\partial y} \\
& +D_{26} \frac{\partial \phi_{y}}{\partial x}+D_{22} \frac{\partial \phi_{y}}{\partial y} \tag{13}
\end{align*}
$$

3. Meshless local radial point collocation method

Eqs. (1)-(5) and corresponding boundary conditions can be expressed in the following form:

$$
\begin{align*}
& L U(X)=\omega^{2} U(X), \quad X \in \Omega \tag{14}\\
& B U(X)=0, \quad X \in \partial \Omega
\end{align*}
$$

where $\partial \Omega$ is the boundary of the problem domain Ω, L is a linear elliptic partial differential operator, B is a linear boundary operator. The solution of Eq. (14) can be approximated with a function $U^{h}(X)$ in the following form [15]:
$U^{h}(X) \approx \sum_{i=1}^{n} \alpha_{i} R_{i}+\sum_{j=1}^{m} \beta_{j} P_{j}$
where n is the number of nodes in the support domain, m is the number of terms of monomial, α_{i} and β_{j} are unknown coefficients, R_{i} is radial basis function, P_{j} is polynomial basis function.

Radial basis function used in this paper is multiquadric as follows:
$R_{i}=\left(\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}+\left(\alpha_{c} d_{c}\right)^{2}\right)^{0.5}$
where x_{i} and y_{i} are coordinate of node i, α_{c} is shape parameter, d_{c} is the average distance of adjacent nodes.

Polynomial basis function used in this paper is as follows:
$P^{T}=[1, x, y]$
The number of terms of monomial $m=3$.
The constraint condition is
$P \alpha=0$
Eqs. (15) and (18) can be rewritten in matrix form by enforcing the interpolation passing through the value at all nodes in the supporting domain.
$\left[\begin{array}{cc}R & P^{T} \\ P & 0\end{array}\right]\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]=\mathrm{G} \eta=\left[\begin{array}{c}U_{S} \\ 0\end{array}\right]$
where

$$
\left[\begin{array}{ll}
R & P^{T}
\end{array}\right]=\left[\begin{array}{ccccccc}
R_{1}\left(r_{1}\right) & R_{1}\left(r_{2}\right) & \ldots & R_{1}\left(r_{n}\right) & 1 & x_{1} & y_{1} \tag{20}\\
R_{2}\left(r_{1}\right) & R_{2}\left(r_{2}\right) & \ldots & R_{2}\left(r_{n}\right) & 1 & x_{2} & y_{2} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
R_{n}\left(r_{1}\right) & R_{n}\left(r_{2}\right) & \ldots & R_{n}\left(r_{n}\right) & 1 & x_{n} & y_{n}
\end{array}\right]
$$

$\left[\begin{array}{ll}P & 0\end{array}\right]=\left[\begin{array}{ccccccc}1 & 1 & \ldots & 1 & 0 & 0 & 0 \\ x_{1} & x_{2} & \ldots & x_{n} & 0 & 0 & 0 \\ y_{1} & y_{2} & \ldots & y_{n} & 0 & 0 & 0\end{array}\right]$
$\eta^{T}=\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \beta_{1}, \beta_{2}, \beta_{3}\right]$
where
$R_{i}\left(r_{j}\right)=\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}+\left(\alpha_{c} d_{c}\right)^{2}\right)^{0.5}$

https://daneshyari.com/en/article/252780

Download Persian Version:
https://daneshyari.com/article/252780

Daneshyari.com

[^0]: * Corresponding author. Tel.: +86 13664150499; fax: +86 02489723720.

 E-mail address: xs74342@sina.com (S. Xiang).

