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a b s t r a c t

In this paper, a meshless local radial point collocation method based on multiquadric radial basis function
is proposed to analyze the free vibration of laminated composite plates. This method approximates the
governing equations based on first-order shear deformation theory using the nodes in the support
domain of any data center. Natural frequencies of the laminated composite plates with various boundary
conditions, side-to-thickness ratios, and material properties are computed by present method. The choice
of shape parameter, effect of dimensionless sizes of the support domain on accuracy, convergence char-
acteristics are studied by several numerical examples. The results are compared with available published
results which demonstrate the accuracy and efficiency of present method.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Numerous scholars have investigated the meshless methods in
recent years. Meshless methods can be categorized into three clas-
ses: meshless methods based on weak-forms, meshless methods
based on collocation techniques, meshless methods based on the
combination of weak-forms and collocation techniques [1]. Mesh-
less methods based on collocation techniques include meshless
global collocation method and meshless local collocation method.
The meshless global collocation method approximates the solution
of partial differential equations using all nodes in the problem do-
main. Ferreira et al. [2–9] and Xiang et al. [10–12] had used it to
analyze the free vibration and static deformation of laminated
composite plates. But global collocation method can result in fully
populated coefficient matrices. To circumvent these difficulties a
local collocation method which approximates the solution of par-
tial differential equations using the nodes in the support domain
of any data center has been proposed by Liu et al. [13–15], Lee
et al. [16]. In Liu et al. [13], a local RBF collocation approach using
a Hermite-type interpolation scheme was proposed to study the
Cook’s membrane problem. In the study of Liu et al. [14], a local ra-
dial point interpolation collocation method (RPICM) was presented
to solve partial differential equations. The choice of shape param-
eter, the enforcement of additional polynomial terms, and the
application of the Hermite-type interpolation were studied by sev-
eral numerical examples. Liu et al. [15] proposed a stabilized local
radial point collocation method (RPCM) based on least-squares

stabilization technique to perform adaptive analysis. Lee et al.
[16] presented the local multiquadric and the local inverse multi-
quadric approximations to solve boundary value problems. A local
radial basis function based gridfree scheme has also been devel-
oped to solve unsteady, incompressible Navier–Stokes equations
in primitive variables by Sanyasiraju and Chandhini [17]. An im-
proved localized radial basis function meshless method was devel-
oped for computational aeroacoustics by Li et al. [18].

This paper deals with the free vibration analysis of laminated
composite plates by a meshless local radial point collocation meth-
od based on multiquadric radial basis function. The choice of shape
parameter, effect of dimensionless sizes of the support domain on
accuracy, convergence characteristics are studied by several
numerical examples. The present results are compared with the
previous literatures. The aim of the present paper is to explore
the potential of meshless local radial point collocation method in
the free vibration analysis of laminated composite plates.

2. Governing equations based on first-order shear deformation
theory

Governing equations based on first-order shear deformation
theory are as follows [20]:
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where u, v, w, /x and /y are the unknown displacement components
of middle surface of the plate. Aij, Bij and Dij are the stiffness compo-
nents. Ii are the mass inertias, x is the natural frequency of free
vibration.
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where q denotes the material density, NL is total number of layer, zk

and zk+1 are the lower and upper z coordinates of the kth layer, Q ðkÞij

are the transformed elastic coefficients defined as [20].
The boundary conditions for an arbitrary edge with simply sup-

ported and clamped supported are as follows.
Simply supported:

x ¼ 0; a : u ¼ v ¼ w ¼ /y ¼ 0; Mx ¼ 0

y ¼ 0; b : u ¼ v ¼ w ¼ /x ¼ 0; My ¼ 0
ð10Þ

Clamped:

u ¼ v ¼ w ¼ /x ¼ /y ¼ 0 ð11Þ
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3. Meshless local radial point collocation method

Eqs. (1)–(5) and corresponding boundary conditions can be
expressed in the following form:

LUðXÞ ¼ x2UðXÞ; X 2 X

BUðXÞ ¼ 0; X 2 @X
ð14Þ

where oX is the boundary of the problem domain X , L is a linear
elliptic partial differential operator, B is a linear boundary operator.
The solution of Eq. (14) can be approximated with a function Uh(X)
in the following form [15]:
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where n is the number of nodes in the support domain, m is the
number of terms of monomial, ai and bj are unknown coefficients,
Ri is radial basis function, Pj is polynomial basis function.

Radial basis function used in this paper is multiquadric as
follows:

Ri ¼ ðx� xiÞ2 þ ðy� yiÞ
2 þ ðacdcÞ2

� �0:5
ð16Þ

where xi and yi are coordinate of node i, ac is shape parameter, dc is
the average distance of adjacent nodes.

Polynomial basis function used in this paper is as follows:

PT ¼ ½1; x; y� ð17Þ

The number of terms of monomial m = 3.
The constraint condition is

Pa ¼ 0 ð18Þ

Eqs. (15) and (18) can be rewritten in matrix form by enforcing the
interpolation passing through the value at all nodes in the support-
ing domain.
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