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a b s t r a c t

This article presents the buckling analysis of isotropic nanoplates using the two variable refined plate
theory and nonlocal small scale effects. The two variable refined plate theory takes account of transverse
shear effects and parabolic distribution of the transverse shear strains through the thickness of the plate,
hence it is unnecessary to use shear correction factors. Nonlocal governing equations of motion for the
nanoplate are derived from the principle of virtual displacements. The closed-form solution for buckling
load of a simply supported rectangular nanoplate subjected to in-plane loading has been obtained by
using the Navier’s method. Numerical results obtained by the present theory are compared with available
exact solutions in the literature. The effect of nonlocal scaling parameter, mode numbers and aspect
ratios of the nanoplates on buckling load are investigated and discussed in detail in the present work.
It can be concluded that the present theory, which does not require shear correction factor, is not only
simple but also comparable to the first-order and higher order shear deformable theory.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Nanoplates such as graphene [1], the two-dimensional (2D)
counterpart of three-dimensional graphite, has attracted vast
interests in solid-state physics, materials science, and nanoelec-
tronics since it was discovered in 2004 as the first free-standing
2D crystal. Graphene is considered as a promising electronic mate-
rial in post silicon electronics. However, large-scale synthesis of
high quality graphene represents a bottleneck for the next genera-
tion graphene devices. Existing routes for graphene synthesis in-
clude mechanical exfoliation of highly ordered pyrolytic graphite
(HOPG) [2], eliminating Si from the surface of single crystal SiC
[3], depositing graphene at the surface of single crystal [4] or poly-
crystalline metals [5], and various wet-chemistry based ap-
proaches [6,7]. However, up to now no methods have delivered
high quality graphene with large area required for application as
a practical electronic material.

A great deal of research has been conducted to explore the
promising properties of the single-layered graphene sheets (SLGSs)
after appearance of the new method of graphene sheet preparation
[8–10]. Furthermore, Katsnelson and Novoselov [11] have explored
the unique electronic properties of the SLGSs. They have stated
that the graphene sheet is an unexpected bridge between con-
densed matter physics and quantum electrodynamics. Moreover,
Meyer et al. [12] have achieved the ability of distinguishing

between single- and multi-layered graphene sheets by analyzing
electron diffraction. On the other hand, Bunch et al. [13] have
reported the experimental results of using electromechanical
resonators made from suspended single- and multi-layered
graphene sheets.

Because of the unique electrical, mechanical and thermal prop-
erties enable the nanostructures (such as graphene, carbon nano-
tube, nanorod, and nanofibre) to be used for the development of
superconductive devices for micro-electromechanical system
(MEMS) and nano-electromechanical system (NEMS) applications.
Conducting experiments with nanoscale size specimens is both dif-
ficult and expensive. Hence, development of appropriate mathe-
matical models for nanostructures is an important issue
concerning the application of nanostructures. The modeling for
the nanostructures is classified into three main categories. The ap-
proaches are atomistic [14,15], continuum [14,15] and hybrid
atomistic-continuum mechanics [16–18]. The above atomic meth-
ods are limited to systems with a small number of molecules and
atoms and therefore restricted to the study of small-scale model-
ing. In order to carry out analysis for a large-sized atomic system,
other powerful and effective models for the analysis are needed.
Continuum mechanics approach is less computationally expensive
than the former two approaches. Further, it has been found that
continuum mechanics results are in good agreement with those
obtained from atomistic and hybrid approaches.

Nanotechnologies small scale makes the applicability of classi-
cal or local continuum models, such as beam, shell and plate mod-
els, questionable. Classical continuum models do not admit
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intrinsic size dependence in the elastic solutions of inclusions and
inhomogeneities. At nanometer scales, however, size effects often
become prominent, the cause of which needs to be explicitly ad-
dressed due to an increasing interest in the general area of nano-
technology [19]. Sun and Zhang [20] indicated the importance of
a semi-continuum model in analyzing nanomaterials after pointing
out the limitations of the applicability of classical continuum mod-
els to nanotechnology. In their semi-continuum model for nano-
structured materials with plate like geometry, material
properties were found completely dependent on the thickness of
the plate structure contrary to classical continuum models. The
modeling of such a size-dependent phenomenon has become an
interesting research subject in this field [21–23]. It is thus con-
cluded that the applicability of classical continuum models at very
small scales is questionable, since the material microstructure,
such as lattice spacing between individual atoms, becomes increas-
ingly important at small size and the discrete structure of the
material can no longer be homogeneities into a continuum. There-
fore, continuum models need to be extended to consider the scale
effect in nanomaterial studies. This can be accomplished through
proposing nonlocal continuum mechanics models.

Nonlocal elasticity theory [24–29] was proposed to account for
the scale effect in elasticity by assuming the stress at a reference
point to be a function of strain field at every point in the body. This
way, the internal size scale could be simply considered in constitu-
tive equations as a material parameter Only recently has the
nonlocal elasticity theory been introduced to nanomaterial appli-
cations. As the length scales are reduced, the influences of
long-range interatomic and intermolecular cohesive forces on the
static and dynamic properties tend to be significant and cannot
be neglected. The classical theory of elasticity being the long wave
limit of the atomic theory excludes these effects. Thus the tradi-
tional classical continuum mechanics would fail to capture the
small scale effects when dealing in nano structures. The small size
analysis using local theory over predicts the results. Thus the
consideration of small effects is necessary for correct prediction
of micro/nano structures. Chen et al. [30] that the nonlocal contin-
uum theory based models are physically reasonable from the
atomistic viewpoint of lattice dynamics and molecular dynamics
(MD) simulations. Peddieson et al. [31] applied nonlocal elasticity
to formulate a nonlocal version of the Euler–Bernoulli beam model
and concluded that nonlocal continuum mechanics could poten-
tially play a useful role in nanotechnology applications.

In wave mechanics of nanostructures, one important outcome
of the nonlocal elasticity is the realistic prediction of the dispersion
curve i.e., frequency-wavenumber/wavevector relation. As shown
in Eringen [24], the dispersion relation

x
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where e0a nonlocality parameter, closely matches with the Born-
Karman model dispersion
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when e0 = 0.39 is considered. However, among the two natural con-
ditions at the mid-point and end of the first Brillouin zone:
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these relations satisfy only the first one. It was suggested that two-
parameter approximation of the kernel function will give better re-
sults. This is reiterated by Lazar et al. [66] that one parameter (only
e0a) nonlocal kernel will never be able to model the lattice dynam-
ics relation and it is necessary to use the bi-Helmholtz type equa-
tion with two different coefficients of nonlocality to satisfy all the
boundary conditions.

It is to be noted that the simple forms of the group and phase
velocities that exist for isotropic materials permitted to tune the
nonlocality parameters so that the lattice dispersion relation is
matched. Further, by virtue of the Helmholtz decomposition, only
one-dimensional Brillouin zone needs to be handled. Although
the general form of the boundary conditions, i.e., group speed is
equal to phase speed (at k = 0) or zero (at k = p/a), is still applicable,
the expressions are difficult to handle. This is because, the Brillouin
zone is really a two-dimensional region where four boundary con-
ditions are involved.

Various size-dependent continuum theories which capture small
scale parameter such as couple stress elasticity theory [32], strain
gradient theory [33], modified couple stress theory [34] are re-
ported. These modified continuum theories are being used for the
analysis of small scale structures. However, the most reportedly
used continuum theory for analyzing small scale structures is the
nonlocal elasticity theory initiated by Eringen [24]. Using this non-
local elasticity theory, some drawbacks of the classical continuum
theory can be efficiently avoided and size-dependent phenomena
can be satisfactorily explained. In nonlocal elasticity theory the
small scale effects are captured by assuming the stress components
at a point is dependant not only on the strain components at the
same point but also on all other points in the domain [24,35].

In the literature a great deal of attention has been focused on
studying the buckling behavior of one-dimensional nanostructures
using nonlocal elasticity theory. These nanostructures include
nanobeams, nanorods and carbon nanotubes. On the contrary no
work appears related to the buckling of biaxially compressed nano-
plate based on two-variable refined plate theory. However some
studies using nonlocal elasticity theory on mechanical behavior
of isotropic nanoplates are recently reported by Murmu and Prad-
han [36–38] and by Duan and Wang [39]. Recently Sakhaee-Pour

Table 1
Non-dimensional critical buckling load.

g (nm) EBT Ref. [62] RBT Ref. [62] HSDT Ref.[61] FSDT (k = 2/3) FSDT (k = 5/6) FSDT (k = 1) Present NLTVRPT

L/h = 20
0.0 9.8696 9.8067 9.8067 9.8005 9.8066 9.8108 9.8067
0.5 9.4055 9.3455 9.3455 9.3393 9.3453 9.3496 9.3455
1.0 8.9830 8.9528 8.9528 8.9466 8.9526 8.9569 8.9528
1.5 8.5969 8.5421 8.5421 8.5359 8.5419 8.5462 8.5421
2.0 8.2426 8.1900 8.1900 8.1838 8.1898 8.1941 8.1900

L/h = 100
0.0 9.8696 9.8671 9.8671 9.8668 9.8671 9.8674 9.8671
0.5 9.4055 9.4031 9.4031 9.4029 9.4031 9.4033 9.4031
1.0 8.9830 8.9807 8.9807 8.9804 8.9807 8.9810 8.9807
1.5 8.5969 8.5947 8.5947 8.5946 8.5947 8.5949 8.5947
2.0 8.2426 8.2405 8.2405 8.2402 8.2405 8.2409 8.2405
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