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a b s t r a c t

This paper studies the stress and displacement distributions of continuously varying thickness function-
ally graded rectangular plates simply supported at four edges. Young’s modulus is graded through the
thickness following the exponential-law and Poisson’s ratio keeps constant. On the basis of three-dimen-
sional elasticity theory, the general expressions for the displacements and stresses of the plate under sta-
tic loads, which exactly satisfy the governing differential equations and the simply supported boundary
conditions at four edges of the plate, are analytically derived. The unknown coefficients in the general
expressions of the stresses are approximately determined by using the double Fourier sinusoidal series
expansions to the boundary conditions on the upper and lower surfaces of the plates. The effect of
Young’s modulus varying rules on the displacements and stresses of functionally graded rectangular
plates is investigated. The proposed three-dimensional elasticity solution can be used to assess the valid-
ity of various approximate solutions and numerical methods for functionally graded plates.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) were first developed by a
group of Japanese scientists to address the needs of aggressive
environment of thermal shock [1]. Now, the concept of FGM has
been widely explored in various engineering applications including
electron, chemistry, optics, biomedicine and so on [2]. FGMs pos-
sess properties that vary continuously as a function of position
within the material, thus FGMs can be used to avoid interfacial
stress concentrations appeared in laminated structures. It should
be mentioned that the classical thin plate theory [3–5] holds the
Kirchhoff hypothesis that neglects shear deformation in the plate,
which is increasingly significant when the plate becomes thicker.
In comparison, the Mindlin plate theory [6] accounts for the shear
deformations by introducing a shear correction factor, but it is lim-
ited to moderately thick plates. Although the higher-order plate
theories [7] enhances the solution accuracy feasibly, only part of
the elastic constants are considered, leading to the fact that the re-
sults will remain the same regardless of the variations of the elastic
constants that are not included in the theory. The most common
features of these simplified theories lies in that the effect of trans-
verse normal stress is ignored, due to which the results are
bounded to inherent errors for extremely thick plates [8]. To assess
validity and establish accuracy of these and other approaches,

which use a number of simplifying assumptions and hypotheses
about stress and displacement fields in functionally graded plates,
and also of numerical methods used in the analysis of such plates,
exact analytical solutions based on the three-dimensional theory of
elasticity are needed for some benchmark problems such as, e.g.,
bending of a rectangular plate. Zhong and Shang [9] developed a
three-dimensional analysis for a rectangular plate made of ortho-
tropic functionally graded piezoelectric material. The plate is sim-
ply supported and grounded along its four edges, and mechanical
and electric properties of the material are assumed to have the
same exponent-law dependence on the thickness coordinate. A
three-dimensional solution of the coupling electroelastic fields in
the plate under mechanical and electric loading on the upper and
lower surfaces of the plate was obtained using state space ap-
proach. Kashtalyan [10] developed three-dimensional elasticity
solution for a functionally graded simply supported plate subjected
to transverse loading. Young’s modulus of the plate is assumed to
vary exponentially through the thickness, and Poisson’s ratio is as-
sumed to be constant. Huang et al. [11] presented the benchmark
solutions for functionally graded thick plates resting on Winkler–
Pasternak elastic foundations, the plate is assumed isotropic at
any point in the plate volume, with Young’s modulus varying expo-
nentially through the thickness while Poisson’s ratio remains the
constant. Liew et al. [12] and Liew and Teo [13] presented the
three-dimensional static and vibration solutions for thick rectan-
gular plates by using the differential quadrature method. More-
over, Liew et al. [14] developed a continuum three-dimensionally
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vibration analysis for thick rectangular plates based on the Ritz
method. A literature survey on thick plate vibrations was given
by Liew et al. [15].

Although plates with constant thickness have being widely used,
the variable thickness plates have also received a lot of attention
from designers and researches. The investigation on plates with
varying thickness has significance in actual engineering because
such plates can enhance the material potential through decreasing
the self-weight and improving the distributions of stresses and dis-
placements. For the elastic analysis of plates of variable thickness,
only a limited number of closed-form solutions are known. Conway
[16,17] studied the elastic bending of tapered axisymmetric plates.
Ohga and Shigematsu [18] used a combination of boundary element
and transfer matrix methods to solve variable thickness rectangular
plates. This method provided a solution for only a special case of var-
iable thickness rectangular plates. Fertis and his colleagues [19–22]
developed a convenient and general method to solve variable thick-
ness plates with various boundary conditions and loading by using
equivalent flat plates. Zenkour [23] presented an exact solution for
the bending of thin rectangular plates with uniform, linear, and qua-
dratic thickness variations. Xu and Zhou [24] presented the three-
dimensionally elasticity solution for simply supported rectangular
plates with variable thickness. Based on the authors’ knowledge,
no three-dimensional elasticity solution to functionally graded rect-
angular plates with variable thickness has been reported.

In the present study, the general expressions for the displace-
ments and stresses, which exactly satisfy the governing differential
equations and simply supported conditions at four edges of the
plates, have been analytically derived. The unknown coefficients
in the stress expressions are approximately determined by the
expansions of double Fourier sinusoidal series to the boundary
conditions on the upper and lower surfaces of the plates. The pro-
posed method has the generality and can be used to analyze the
stress and displacement distributions of functionally graded rect-
angular plates with arbitrarily continuously varying thickness.

2. Elasticity solutions

Consider a continuously varying thickness functionally graded
rectangular plate with length a, width b and thickness H at one
side, as shown in Fig. 1. The plate is simply supported at four edges.
The upper surface of the plate is horizontal and is subjected to the
transverse load q(x, y). The lower surface of the plate is described
by the continuous functions f(x, y). The plate is assumed isotropic
at any point in the volume with constant Poisson’s ratio l, while
Young’s modulus E varies exponentially through thickness accord-
ing to the following form

E ¼ Eekz

0 ; ð1Þ

where k is the gradient index and E0 is Young’s modulus of the plate
at z = 0. In the Cartesian coordinate system, the three-dimensional

constitutive relations of an isotropic elastic body are given as
follows:
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where rx, ry and rz are the normal stress components in the x, y and
z directions. sxy, sxz and syz are the shear stresses. u, v, w are the dis-
placement components in the x, y and z directions respectively. k, G
are the Lamè constants with the same variation scheme of Young’s
modulus E.

Namely,

kðzÞ ¼ k0ekz; GðzÞ ¼ G0ekz; ð3Þ

in which,
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In the absence of body forces, the equilibrium equations of
functionally graded rectangular plates can be written in terms of
displacements as follows:
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For a rectangular plate simply supported at four edges, the
boundary conditions are simulated by

rx ¼ 0; v ¼ w ¼ 0 atx ¼ 0; a;
ry ¼ 0; u ¼ w ¼ 0 aty ¼ 0; b;

ð6Þ

where a and b are the length and width of the plate, respectively.
Assume that the displacement distributions have the following

form:

u ¼
X1
m¼1

X1
n¼1

UmnðzÞ cosðbmxÞ sinðcnyÞ;

v ¼
X1
m¼1

X1
n¼1

VmnðzÞ sinðbmxÞ cosðcnyÞ;

w ¼
X1
m¼1

X1
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WmnðzÞ sinðbmxÞ sinðcnyÞ;
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where bm ¼ mp
a ; cn ¼ np

b ;UmnðzÞ;VmnðzÞ and WmnðzÞ are the unknown
functions about the coordinate z. It can be seen that Eq. (7) exactly
satisfies Eq. (6).
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2p2
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q
and substituting Eq. (7) into Eq. (5),

one has
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Fig. 1. Functionally graded rectangular plate with continuously varying thickness.

Y. Xu, D. Zhou / Composite Structures 91 (2009) 56–65 57



Download English Version:

https://daneshyari.com/en/article/252991

Download Persian Version:

https://daneshyari.com/article/252991

Daneshyari.com

https://daneshyari.com/en/article/252991
https://daneshyari.com/article/252991
https://daneshyari.com

