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a b s t r a c t

A method for reducing vibration of a sandwich structure using the antiresonance technique is presented.
It is found that with appropriate resonators, the motion of the sandwich structure due to disturbances
with certain frequencies can be effectively suppressed. A simple two-degree-of-freedom system consist-
ing of an absorbing mass connected by springs to a drive mass is introduced and used to interpret the
vibration behavior of the sandwich structure with resonators.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Sandwich structures widely used in aircraft, marine, and wind
turbine blade structures which are subjected to periodic dynamic
loads. In order to avoid the consequences of divergent motion, pas-
sive solutions including mass balancing and structural modifica-
tion or active control techniques have been employed [1,2]. Also,
a few resonators have investigated the optimization of the geomet-
ric and material properties of sandwich structures for resisting
acoustic disturbances [3,4]. Moreover, the topology design of peri-
odic multifunctional core structures and the relationship between
the topology and performance has been presented and utilized for
sound/vibration reduction [5,6]. Recently, Chen et al. [7] proposed
the idea of embedding resonators in the core of the sandwich
structure and show the dynamic disturbances can be attenuated
as they propagate along the sandwich beam.

In this study, the resonators with proper resonance frequencies
are proposed for suppressing the resonance of the sandwich struc-
ture. The whole system operates on the same principle as the
dynamic vibration absorber. This novel idea arises from a two-
degree-of-freedom system which is composed of an absorber mass
connected by linear springs to a drive mass subjected to a har-
monic exciting force [8]. It is found that if the driving frequency
is close to the antiresonance frequency of the whole system, the
absorber mass will generate an equal force but opposite to the
external or the drive force. As a result, the original oscillating sys-
tem remains stationary since the absorber mass exactly cancels the
effects of the input force.

Applying this concept to solid structures offers an additional
possibility of suppressing the resonance of structures. The sand-

wich structure acts more or less like the drive mass while the inter-
nal mass of the resonator as the absorber mass. The steady-state
and transient responses of a sandwich beam with appropriate
internal resonators are studied. It is expected that disturbances
dominated by frequencies that are close to the antiresonance
frequency of the whole structure cannot excite the sandwich
beam into transverse motion and the beam would appear almost
motionless.

2. Force vibration of two-degree-of-freedom system

A diagram of a two-degree-of-freedom system is shown in Fig. 1
in which m1 is connected through a spring (k1) to the fixed end, and
m2 is connected through a spring (k2) to m1. A harmonic forcing
function acts on mass m1. m1 and m2 are usually referred to as
the drive mass and the absorber mass, respectively; k1 and k2 as
the drive mass spring and the absorber mass spring. The equations
of motion can be readily expressed as

m1€u1 þ k1u1 þ k2ðu1 � u2Þ ¼ F sin xt ð1Þ

m2€u2 þ k2ðu2 � u1Þ ¼ 0 ð2Þ

where F is the force amplitude, u1 and u2 are the displacements of
mass m1 and m2, respectively.

The solution for the steady-state harmonic motion can be ob-
tained by substituting the displacements

ui ¼ �ui sin xt ði ¼ 1;2Þ ð3Þ

in Eqs. (1) and (2) with the results of the force–displacement
ðF � �u1Þ relation and the displacement relation of two masses,
namely

�m1 �
ðk1 þ k2Þm2

k2 �x2m2

� �
x2�u1 þ

k1k2

k2 �x2m2

� �
�u1 ¼ F ð4Þ
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�u2 ¼
k2

k2 �m2x2
�u1 ð5Þ

By solving Eqs. (4) and (5), the displacements �u1 and �u2 can be
obtained as

�u1 ¼
F
k1

1� x2

x2
2

� �
1þ k2

k1
� x2

x2
1

� �
1� x2

x2
2

� �
� k2

k1

h i ð6Þ

�u2 ¼
F
k1

1

1þ k2
k1
� x2

x2
1

� �
1� x2

x2
2

� �
� k2

k1

h i ð7Þ

where x1 and x2 are the resonant frequencies of the isolated
m1 � k1 and m2 � k2 systems, respectively, i.e.,

x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

q
ð8Þ

x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

q
ð9Þ

An antiresonance frequency can be determined from Eqs. (6)
and (7). It is apparent that when the numerator of Eq. (6) vanishes
and the denominator has a finite value, �u1 becomes zero and hence
xant is obtained as

x2
ant ¼

k2

m2
ð10Þ

In addition, the system resonance frequencies are acquired by
equating the denominators of the system responses to zero. Thus

1þ k2

k1
�x2

x2
1

� �
1�x2

x2
2

� �
� k2

k1
¼ 0 ð11Þ

Eq. (11) is a quadratic equation in x2. Hence it is evident that
two finite values of x2, which satisfy Eq. (11), can be found. In
other words, two forcing frequencies would result in the system
resonance. Moreover, as mass ratio m2/m1 increases, the resonance
frequency separation increases.

If this two-degree-of-freedom system is treated as a one-de-
gree-of freedom model, an effective mass must be introduced in
order that the representative mass can effectively describe the
vibration of m1. In other words, the identity of the internal mass
m2 would be ignored and its effect would be absorbed by introduc-
ing an effective mass meff as depicted in Fig. 2.

The force–displacement relation for the single mass model is
given by

�meff x2�uþ keff �u ¼ F ð12Þ

Comparing Eqs. (4) and (12) we obtain the effective mass and
effective spring constant, respectively, as

meff ¼ m1 þ
ðk1 þ k2Þm2

k2 �m2x2 ð13Þ

keff ¼
k1k2

k2 �m2x2 ð14Þ

Rewriting Eq. (12) gives the displacement amplitude of meff, i.e.,

�u ¼ F
keff �meff x2 ð15Þ

From Eq. (15), it is evident that at the antiresonance frequency
xant defined by

x2
ant ¼ k2=m2 ð16Þ

both meff and keff become unbounded, and thus, �u vanishes.

3. Force vibration of a sandwich beam with internal resonators

A supported sandwich beam with internal resonators, subjected
to a uniform harmonic pressure excitation of frequency x, is con-
sidered and illustrated in Fig. 3. Each resonator is composed of a
mass mr and two linear springs with a spring constant denoted
by kr. A representative sandwich beam element (a unit cell) and
the equivalent model viewed as the combination of an equivalent
sandwich beam element attached by a mass with a spring are de-
picted in Figs. 4a and b, respectively [7]. The sandwich beam is
treated as a Timoshenko beam with the equivalent material prop-
erties including the bending rigidity EI, shear rigidity GA, mass per
unit length qA, and rotary inertia qI. The beam mass in a unit cell is
denoted by mb, and mb = qA � a where a is the spacing of the res-
onators. Instead of solving complicated differential equations of
the beam model, the resonant frequencies and antiresonance fre-
quency of such a sandwich structure can be obtained by using

m1 m2

k2

u1 u2

k1

F(t) =Fsinωt

Fig. 1. Two degrees of freedom system.

u

meff

keff

F(t) =Fsin ωt

Fig. 2. The equivalent model.

Fig. 3. A supported sandwich beam with resonators under a uniform harmonic
pressure.

(a) (b)
mr

mr
kr

kr

Effective 
Core

2kra

Fig. 4. Schematic diagram of (a) a unit cell and (b) its equivalent model.
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