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a b s t r a c t

The strain energy density is considered as a measure of the stiffness/flexibility of the composite structure.
A methodology for determining the stationary points of the strain energy density in anisotropic solids is
developed. The methodology proposed is based on new problem formulation, derivation and analysis of
optimality conditions, and decomposition method. The optimal material orientation problem is formu-
lated in terms of strains. The optimality conditions derived cover different material symmetries, linear
and also some non-linear material models. The complexity analysis of the optimality conditions has been
performed. The proposed approach allows to divide the solution of the optimal material orientation prob-
lem into less complicated subtasks.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The stiffness/flexibility of the composite structure is affected
among size, shape, topology, etc. and by the material orientation.
In [1] Banichuk introduced energy based formulation for optimal
material orientation problem according to which the elastic energy
density is considered as a measure of the stress–strain state. This
approach is used most commonly up to now. Pedersen [2,3], Sacci
and Rovatti [4] applied this approach for optimal design of 2D lin-
ear elastic orthotropic materials. In [2] the closed form analytical
solution for optimal material orientation problem of linear elastic
2D orthotropic materials is given including analysis of global and
local extremes. The results for non-orthotropic 2D linear elastic
materials are given in [5].

In [6–8] different non-linear elastic material models are pro-
posed for solving oriental design problems. In all these papers the
effective strain (stress) has been used as a scalar measure of the
strain (stress) state. In [6,8] the non-linear material behavior is sim-
ulated on the basis of a power law with one term and a series expan-
sion, respectively. In [7] the stress strain relation is described by
more general function of effective strain, given in the implicit form.

Orientational design problems of 3D orthotropic materials are
studied by Seregin and Troitski [9], Rovati and Taliercio [10,11],
Cowin [12], etc. In [9] and [10,11] the potential energy of deforma-
tion and the specific elastic energy density are subjected to mini-
mization, respectively. In all these papers it is pointed out, that
the stress and strain tensors are coaxial at the optimum. In [9]
the optimality conditions in terms of stresses for general orthotro-
pic material are derived and the solution modes are discussed. In

[10] the optimization problem is formulated in terms of Euler an-
gles. Collinearity of principal directions of stress and strain at the
optimum is derived from the stationary condition of the strain en-
ergy density. Complete analytical solution for body with cubic
symmetry in terms of strains is given. In both, Rovati and Taliercio
[11] and Cowin [12] thoroughgoing analysis of the 3D optimal
material orientation problem is performed. In these papers the
general non-orthotropic material with 21 independent coefficients
is considered and the coaxiality condition of the stress and strain
tensors is converted into simplified form using decomposition of
the elasticity tensor. The final form of the optimality conditions, gi-
ven in [11,12] in terms of compliance and constitutive tensors,
respectively, is a quite similar, but the interpretation is principally
different. In [12] the search for optimal solution is performed for all
stress states, which leads to condition that all compliance coeffi-
cients (mutually rotated) must vanish. In latter case the closed
formed solution of optimality conditions is not too complicated,
but the unique solution does not exist for all material symmetries.
In [11] a fixed strain (stress) state is considered. In the latter case
the solution of optimality conditions is complicated task in the
case of general orthotropic or non-orthotropic materials.

An overview of the optimization techniques dealing with com-
posites laminates with uniform stacking sequence through their
entire structure is given in [13]. The properties of different optimi-
zation methods (including gradient based and direct search meth-
ods, specialized algorithms) utilized for composite lay-up design
are compared. An approach proposed in [14] for design of compos-
ite laminates transforms a bending design problem into simpler
extension design problem. Interesting particular design problems
– development of optimal biomimetic composite structures are
discussed in [15]. This paper is focused on experimental study of
optimal composite structures in the forewings of beetles. A novel
schematic model of reticular chitin fibers containing the bridging

0263-8223/$ - see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compstruct.2010.01.015

* Corresponding author.
E-mail addresses: jmajak@staff.ttu.ee (J. Majak), meelisp@staff.ttu.ee

(M. Pohlak).

Composite Structures 92 (2010) 1839–1845

Contents lists available at ScienceDirect

Composite Structures

journal homepage: www.elsevier .com/locate /compstruct

http://dx.doi.org/10.1016/j.compstruct.2010.01.015
mailto:jmajak@staff.ttu.ee
mailto:meelisp@staff.ttu.ee
http://www.sciencedirect.com/science/journal/02638223
http://www.elsevier.com/locate/compstruct


fibers between the fibers has been introduced. Such structure has
certain advantages in comparison with an ordinary cloth weaving:
unbendable, without concentrated stress at the cross points be-
tween the fibers.

In the current paper the optimal material orientation problem is
formulated in terms of strains considering the strain energy den-
sity as a measure of the stress–strain state. The strain components
are considered as design variables. Such an approach allows to de-
rive the necessary optimality conditions in terms of strains for dif-
ferent material symmetries and stress–strain relations. The
optimality conditions in terms of strains have been derived by
authors also in [16,17], but these results are material symmetry
specific (the optimization problem has been formulated initially
in terms of Euler angles and converted to strains using relations be-
tween the strain components and its derivatives with respect to
Euler angles). Next the complexity analysis, simplification and
solution of the optimality conditions have been performed for
specified material symmetries. It is shown that in the case of linear
elastic 3D orthotropic materials the order of optimality conditions
given in terms of strains can be reduced up to solving one-sixth or-
der algebraic equation for the solution mode where all shear stres-

ses are nonzero (the remaining solution modes are covered with
closed form analytical solutions).

An approach proposed above allows to consider different design
variables given as functions of strain components. Numerical algo-
rithm based on global optimization technique (hybrid GA) is trea-
ted as an alternative solution and the results are compared.

2. Theoretical framework

An approach given in the current paper includes new problem
formulation, derivation of the optimality conditions and the
decomposition method described in detail below. This approach
can be utilized for 3D materials with special symmetries, general
3D anisotropic materials (21 independent material parameters),
2D anisotropic materials, linear and non-linear elastic material
models.

2.1. Problem formulation

In the following the strain energy density is considered as a
measure of the stress–strain state

U ¼ 1
2
rijeij !minðmaxÞ; ð1Þ

where rij and eij stand for the components of the stress and strain
tensors, respectively. It is assumed that elastic solid is subjected
to a fixed strain (stress) field. The goal is to determine the optimal
material orientations corresponding to stationary points of the
strain energy density. Most commonly, the Euler angles or the com-
ponents of the rotation tensor are considered as design variables
(3D anisotropic elasticity) and the optimization problem is formu-
lated as [10–12]

JEnergy ¼ Uðhi;CijklÞ !minðmaxÞ; ð2Þ
JEnergy ¼ UðQ ij; CijklÞ !minðmaxÞ: ð3Þ

In (2), (3) hi, Qij and Cijkl stand for the Euler angles, the compo-
nents of the rotation tensor and elasticity tensor, respectively.

In the current study the strain components eij are considered as
design variables and the optimization problem is formulated as

JEnergy ¼ Uðeij; CijklÞ !minðmaxÞ: ð4Þ

The objectives (2)–(4) are given in a similar form, but their
implementation is a quite different. First, note that the optimiza-
tion problem considered is unconstrained in the case of formula-
tion (2) and constrained in the case of formulations (3), (4). The
Euler angles (parameters) are included in strain energy density
through the rotation tensor, which is applied to the constitutive
matrix in [11,12] and to the strain components in [16] and herein.
In the latter case the transformation formulas for strains are given
as

eik ¼ ejQ jiQ jk; ð5Þ

where ej(j = I, II, III) stand for the principal strains and Qji are the
components to a second-order orthogonal tensor, representing the
coordinate transformation

In the case of linear elasticity (2D or 3D materials) the Hooke’s
law can be applied and the stationary conditions of the strain en-
ergy density corresponding to objectives (2), (3) can be written
as [11,12]

@U
@hi
¼ @ðCijkleijeklÞ

@hi
¼ 0; ð7Þ

@ðĈmnpqQ imQ kpQ lqeirekl �KrjQ jnÞ
@Q rn

¼ 0; ð8Þ

where Ĉmnpq and Krj stand for the rotated constitutive matrix and
Lagrange multipliers, respectively. The stationary conditions of
the strain energy density corresponding to the current formulation
(objective (4)) can be obtained by introducing the extended func-
tional J� as

J� ¼ U þ kmIm ð9Þ

and equalizing its first variation to zero

dJ� ¼ 0: ð10Þ

In (9) km and Im stand for the Lagrange multipliers and the con-
straints corresponding strain invariants, respectively. In details the
constraint equations read

I1¼ e11þe22þe33�eI�eII�eIII ¼0;
I2¼ e11e22þe11e33þe22e33�e2

12�e2
23�e2

31�eIeII�eIeIII�eIIeIII ¼0;
I3¼ e11e22e33þ2e12e23e31�e11e2

23�e22e2
31�e33e2

12�eIeIIeIII ¼0:

8><
>:

ð11Þ

It is assumed in (10) that the variations deij are independent.

2.2. Necessary optimality conditions

The necessary optimality conditions can be derived from condi-
tion (10) as

½Q � ¼
cosðh3Þ cosðh1Þ � sinðh3Þ cosðh2Þ sinðh1Þ � cosðh3Þ sinðh1Þ � sinðh3Þ cosðh2Þ cosðh1Þ sinðh3Þ sinðh2Þ
sinðh3Þ cosðh1Þ þ cosðh3Þ cosðh2Þ sinðh1Þ � sinðh3Þ sinðh1Þ þ cosðh3Þ cosðh2Þ cosðh1Þ � cosðh3Þ sinðh2Þ

sinðh2Þ sinðh1Þ sinðh2Þ cosðh1Þ cosðh2Þ

0
B@

1
CA: ð6Þ
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