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a b s t r a c t

This paper considers the Mixed Interpolation of Tensorial Components (MITC) technique, which was orig-
inally proposed for Reissner–Mindlin type plates to develop shear locking free refined multilayered plate
elements. Refined elements are obtained by referring to variable kinematic modelling in the framework
of the Carrera Unified Formulation (CUF): linear, parabolic, cubic and fourth-order displacement fields in
the thickness direction of the plate are used; both equivalent single layer (the multilayered plate is con-
sidered as an equivalent one-layer plate) and layer-wise (each layer is considered as an independent
plate) variable descriptions are accounted for. Four-node elements are considered and a number of appli-
cations are developed for isotropic and multilayered anisotropic plates. Results related to the mixed
interpolation of tensorial components are compared to the reduced and selective integration technique
in the static and dynamic linear analysis. The numerical results show that the MITC technique maintains
its effectiveness in the case of variable kinematic plate elements, hence the obtained elements are free
from shear locking mechanisms. The capability of MITC to reduce/remove spurious modes is confirmed
for refined multilayered elements.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The shear locking phenomena in Reissner–Mindlin type finite
elements (FEs) remains a milestone in finite elements analysis.
Shear locking consists of a numerical difficulty (in the convergence
rate sense) of reducing Reissner–Mindlin plate/shell elements to
exact or Kirchhoff–Love solutions in the case of thin plate/shell
analysis. The inclusion of both bending and shear stiffness in a un-
ique rotational degree of freedom, in fact, makes it difficult to ob-
tain zero-transverse-shear-energy in thin shell structures, as in
physics. The mesh convergence rate becomes very small and a
huge number of elements would be necessary to fulfill the zero-
transverse-shear-energy constraint. A pioneering remedy, pro-
posed in the late 1960’s- early 1970’s, is based on a reduced and/
or selective numerical integration technique of transverse shear
stiffness contributions. The reduced integration permits a signifi-
cant increase of the convergence rate through the evaluation of
the transverse shear strain energy in a plate integration point in
which the corresponding shear strains are very small. The problem
has been clearly explained and dealt with in detail in many FE

books, such as those by Zienkiewic [1], Bathe [2] and Hughes [3],
among others.

Unfortunately reduced integration techniques, since they intro-
duce, ‘by definition’, an additional error into the evaluation of stiff-
ness matrices, could lead to an increase in spurious and/or hour-
glass type ‘non-physical’ deformation modes which could destroy
the related FE solutions. Such a drawback cannot be accepted espe-
cially in the case of nonlinear analysis, in which previous load-step
solutions (which can be largely affected by spurious modes) are
used to build the current equilibrium (e.g., with the Newton–Raph-
son method application). Non-convergent solution can be obtained
in practical applications.

A remedy to this problem was introduced by many authors in
the 80’s. In particular, reference can be made to the work by Bathe
and Dvorkin [4], even though similar works (earlier and/or later)
by Mc Neal [5], Huang and Hinton [6] and Jang et al. [7] are known.
In [4], the remedy was stated as Mixed Interpolation of Tensorial
Components (MITC) and was first proposed for linear four node
Q4 plate/shell elements. Subsequent work led to the extension to
eight node Q8 elements. The MITC formulation permits the trans-
verse shear locking phenomenon to be eliminated by introducing
an independent FE approximation into the element domains for
the transverse shear strains. Other authors have preferred to call
this remedy as ‘assumed shear strain field concept’, as in [8]. A
more rigorous mathematical justification of the MITC technique
was established in the framework of the so-called Babuska–Brezzi
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conditions [9]. Further studies on the MITC method for Reissner–
Mindlin problems were provided by Brezzi et al. [10] and Della
Croce et al. [11,12].

Over the last decade, the first author has proposed the Carrera
Unified Formulation (CUF) [13–16], for the analysis of layered
structures. CUF permits a large variety of plate/shell theories as
well as FEs, with variable kinematic and hierarchical properties,
to be handled in a unified manner, on the basis of few so-called
‘fundamental nuclei’. Refined Equivalent Single Layer (ESL) and
Layer-Wise (LW) models have been used; the number of indepen-
dent variables is maintained independent by the number of the
constitutive layers Nl in the ESL models, while the unknown vari-
ables are independent in each layer in the LW models. The shear
locking mechanism, in the related FE method, has been contrasted
by using reduced/selective integration techniques, which lead to
satisfactory results in the case of geometrically linear problems
[17]. Extension to FE analysis of smart structures has been also pro-
vided in [18,19]. The present work aims at extending the MITC
technique to variable kinematic models for the case of plate ele-
ments with four nodes. The aim is twofold: 1. to prove that the
extension of MITC to higher-order (ESL and LW models) plate ele-
ments is feasible and 2. to show that such an extension is numer-
ically efficient. The paper is organized as follows: Section 2 briefly
recalls the original MITC technique for the case of Reissner–Mind-
lin plate theories; Section 3 shows the variable kinematic model-
ling in the CUF framework; Section 4 formulates the extension of
the MITC technique to CUF by deriving the corresponding funda-
mental nuclei; Section 5 shows the obtained numerical results.
The conclusions are drawn in the last section.

2. The MITC technique

A four node plate bending element, based on the Mindlin–Reiss-
ner plate theory and mixed interpolation, was proposed by Bathe
and Dvorkin in [4]. The Mixed Interpolation Tensorial Component
(MITC4) method calculates the transverse shear stresses rxz and
ryz in a different manner from other tensorial components. Shear
stresses are approximated in sample points of the domain X (see
Fig. 1).

According to the Mindlin–Reissner theory, the displacement
field is modelled as follows:

ui ¼ u0
i þ z/i i ¼ x; y

uz ¼ u0
z

ð1Þ

where /x; /y are the rotations of the normals to the reference sur-
faces x–z and y–z, respectively; the apex0 denotes a quantity calcu-

lated on X. By introducing the FE approximation, the displacement
field is described by the relation:

fu0
x ;u

0
y ;uz;/x;/yg ¼ fNg

Tfqg ð2Þ

where fNg denotes the vector of the interpolating Lagrange shape
functions and fqg is the vector of the nodal degrees of freedom.
The dimension of fqg is 5 � nn, where nn is the number of finite ele-
ment nodes, in this case nn ¼ 4.

Hooke’s law can be conveniently written for a generic layer by
splitting the bending (b) and shear (s) contributions:
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� �
ð3Þ

The geometrical relations permit the strains eb and es to be writ-
ten as a function of the displacements, therefore:
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In matrix form:

febg ¼ ½Bb�q; fesg ¼ ½Bs�q ð5Þ

According to MITC4, the transverse shear strains are interpo-
lated assuming the following shear strain field (see Fig. 1):

fesg ¼
fexzg
feyzg

� �
¼

1
2 ð1þ nÞeN

xz þ 1
2 ð1� nÞeQ

xz
1
2 ð1þ gÞeP

yz þ 1
2 ð1� gÞeM

yz

( )
ð6Þ

where M, N, P and Q are sample points and n; g are the natural coor-
dinates in the plane of the element. The relations between the glo-
bal coordinates x; y and the natural coordinates n; g are the
following:

x ¼
XNn

j¼1

xjNjðn;gÞ

y ¼
XNn

j¼1

yjNjðn;gÞ
ð7Þ

with �1 < n; g < 1. Nj is the Lagrange shape function relative to
node j.

In this way, the stiffness matrix K is written in two contribu-
tions (bending and shear):

½K� ¼ ½Kb� þ ½Ks�
½Kb� ¼ h½Bb�T ½Qb�½Bb�i; ½Ks� ¼ h½Bs�T ½Q s�½Bs�i

ð8Þ

where the following notation has been introduced:

h. . .i ¼
Xns

k¼1

Z
Vk

ð. . .ÞdVk ð9Þ

where ns is the number of layers and Vk is the volume of the layer k.

3. Variable kinematic model via Carrera Unified Formulation

Carrera Unified Formulation (CUF) is a technique which handles
a large variety of bi-dimensional models in a unified manner.
According to CUF, the governing equations are written in terms
of a few fundamental nuclei which do not formally depend on
the order of expansion N used in the z direction and on the descrip-
tion of variables: ESL or LW. The application of a two-dimensional
method for plates permits to express the unknown variables as a
set of thickness functions depending only on the thickness coordi-
nate z and the corresponding variables depending on the in plane
coordinates x and y. So that, a generic variable, for instance the

Fig. 1. Sample points (M,N,P,Q) to approximate the shear contribution in the MITC4
element.
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