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a b s t r a c t

An analysis is presented for the free vibration of a functionally graded isotropic elastic rectangular plate
with in-plane material inhomogeneity. A Levy-type solution is obtained for plates with a pair of simply
supported edges that are parallel with the material gradient direction. A particular integration method is
adopted to solve the fourth-order ordinary differential equation with non-constant coefficients. The effi-
ciency and accuracy of the analysis are demonstrated through numerical examples.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) are a new kind of materi-
als exhibiting spatially continuous variation of material properties
along one, two or three directions in a particular coordinate sys-
tem. Since material interfaces are absent, the interfacial stress con-
centration phenomenon due to material mismatch as encountered
in the conventional composite laminates or coated structures can
be completely avoided. Primarily, FGMs were mainly developed
as heat-resisting materials used in aerospace engineering.
Recently, FGMs have also found wide applications in other areas,
such as transducers, energy transform, biomedical engineering,
optics, etc. [1].

There exists plenty of research on FGM structures (including
beams, plates and shells) [2–17]. Most works deal with FGM struc-
tures with material inhomogeneity along the thickness direction
only. When employing simplified structural theories (i.e. the beam,
plate and shell theories), there is no significant difference in the
analysis between FGM plates and the conventional laminated
plates. Recently, Qian and Ching [18] used the meshfree local Pet-
rov–Galerkin method to investigate the static and dynamic behav-
ior of a cantilever beam with material properties varying along two
directions. Goupee and Vel [19] performed an optimized natural
frequency analysis of bi-directional FGM beams using the
element-free Galerkin method. Lü et al. [20] presented a semi-
analytical analysis of bi-directional FGM beams using the state-
space based differential quadrature method [21–23]. In these works
[18–20], the in-plane material inhomogeneity, in addition to the

through-thickness one, has been taken into consideration, but only
numerical or semi-analytical solutions have been obtained.

In this paper, the free vibration of a rectangular FGM plate with
in-plane inhomogeneity is considered. The governing equation
based on the classical plate theory is presented when the plate
material is graded along one in-plane direction. For the plate sim-
ply supported at the edges parallel to that direction, a Levy-type
solution is sought. The resulting ordinary differential equation is
solved by a particular integration method which transforms a
two-point boundary value problem to two initial value problems
[24], which modified the method of Ref. [25]. Numerical results
are finally given to indicate the accuracy and effectiveness of the
present analysis.

2. Basic formulations

Consider a functionally graded isotropic elastic plate as shown
in Fig. 1. We first assume that the plate has varying material prop-
erties as well as geometric properties in the plate plane x�y, i.e. the
flexural rigidity of the plate D = Eh3/[12(1�m2)] = D(x, y) is a func-
tion of x and y. The governing equation for free vibration can be
deduced as
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where Dm = D(1�m) and, at this stage, the Poisson’s ratio m and the
density q can also be functions of x and y. If the Poisson’s ratio m
is a constant, which is approximately true for metal–ceramic
FGM, then the above equation reduces to
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which is the same as that presented in the appendix of Ref. [26].
Now we confine ourselves to the particular case that the plate is

graded in the y direction only, for which the material coefficients
depend on y only. We also let the thickness of the plate be a con-
stant h. Eq. (1) then becomes

Dr4wþ @
2D
@y2 r

2wþ 2
@D
@y
r2 @w

@y
� @

2Dm

@y2

@2w
@x2 þ q

@2w
@t2 ¼ 0 ð3Þ

which is the governing equation of the FGM plate considered in this
paper.

Assume that the plate material is made from ceramic and metal,
and it is of full ceramic at y = 0 and of full metal at y = L. The mate-
rial constants, such as the elastic modulus E, Poisson’s ratio m, and
density q, satisfy the following relationship [27]

P ¼ VmPm þ VcPc; Vm þ Vc ¼ 1;Vm ¼ ðy=LÞn ð0 6 y 6 LÞ ð4Þ

where Vc and Vm are the volume fractions of ceramic and metal, and
n, a real number, is the material graded index. This power law dis-
tribution of material property is one of the most appropriate and
also simplest models for a two phase mixture, which is established
by Voigt-type estimate [28].

If the gradient rule in Eq. (4) is employed, then

E ¼ ðy=LÞnEm þ ½1� ðy=LÞn�Ec ð0 6 y 6 LÞ ð5aÞ
m ¼ ðy=LÞnmm þ ½1� ðy=LÞn�mc ð0 6 y 6 LÞ ð5bÞ
q ¼ ðy=LÞnqm þ ½1� ðy=LÞn�qc ð0 6 y 6 LÞ ð5cÞ

where subscripts m and c indicate metal and ceramic, respectively.
Thus the expression for the flexural rigidity is

D ¼ Eh3

12ð1� m2Þ ¼
ðy=LÞnEm þ ½1� ðy=LÞn�Ec

12f1� ½ðy=LÞnmm � ½1� ðy=LÞn�mc�2g
h3 ð6Þ

In general, the difference between the Poisson’s ratios of metal
and ceramic can be neglected, thus we have

D ¼ ðy=LÞnEm þ ½1� ðy=LÞn�Ec

12ð1� m2Þ h3 ð7Þ

3. Solution

First we normalize all lengths by L, the length of the plate along
the y-direction. The gradient rule in Eq. (5) becomes

E ¼ E0ð1� yn þ lynÞ ¼ E0sðyÞ ð0 6 y 6 1Þ ð8aÞ
q ¼ q0ð1� yn þ bynÞ ¼ q0vðyÞ ð0 6 y 6 1Þ ð8bÞ

where l = Em/Ec, b = qm/qc, E0 = Ec, and q0 = qc. Note that the same
symbol y has been used for the dimensionless coordinate. Then
the flexural rigidity in Eq. (7) becomes

D ¼ Eh3

12ð1� m2Þ ¼ D0s ð9Þ

where D0 = E0h3/[12(1 � m2)].Now we consider the case that the
plate is simply supported at x = 0, a. The Levy-type solution can
be sought by assuming

w ¼ sinðaxÞYðyÞeixt ð10Þ

where a = mp/a.
Substituting Eq. (10) into Eq. (3), we derive

sY ð4Þ þ 2s0Y 000 þ ðs00 � 2a2sÞY 00 � 2a2s0Y 0 þ ða4s� ma2s00 � k4vÞY ¼ 0

ð11Þ

where k4 ¼ q0x2L4h=D0.
The problem now reduces to solve Eq. (11), which is an ordinary

differential equation with non-constant coefficients. If the solution
is obtained, the lowest eigenvalue k, which is of most significance
in engineering design, can be readily determined for given n, a, l
and b as well as the boundary conditions at y = 0,1. The solution
however is not easy to find, and we shall employ the efficient
method in Ref. [24], which turns the two-point boundary-value
problem into two initial value problems.

If the plate is clamped at y = 0 and free at y = 1, the boundary
conditions are

Yð0Þ ¼ 0; Y 0ð0Þ ¼ 0 ð12aÞ
Y 00ð1Þ � a2mYð1Þ ¼ 0; Y 000ð1Þ � a2ð2� mÞY 0ð1Þ ¼ 0 ð12bÞ

where the first formula indicates zero deflection and zero rotation,
and the second formula indicates zero moment and zero shear. Fol-
lowing Ref. [24], we assume that Y1 and Y2 satisfy Eq. (11) and the
following initial conditions

Y1ð0Þ ¼ 0; Y 01ð0Þ ¼ 0; Y 001ð0Þ ¼ 1; Y 0001 ð0Þ ¼ 0 ð13aÞ
Y2ð0Þ ¼ 0; Y 02ð0Þ ¼ 0; Y 002ð0Þ ¼ 0; Y 0002 ð0Þ ¼ 1 ð13bÞ

A standard Runge–Kutta algorithm is adopted to obtain the
solutions Y1 and Y2.

It is clear that the solution to Eq. (11) and (12a) can be ex-
pressed as a linear combination of the two independent solutions
Y1 and Y2.

Y ¼ C1Y1 þ C2Y2 ð14Þ

By substituting Eq. (14) into Eq. (12b), we have two linear
homogeneous algebraic equations.

Y 001ð1Þ � a2mY1ð1Þ Y 002ð1Þ � a2mY2ð1Þ
Y 0001 ð1Þ � a2ð2� mÞY 01ð1Þ Y 0002 ð1Þ � a2ð2� mÞY 02ð1Þ

 !
C1

C2

� �
¼ 0

ð15Þ

For non-trivial solutions of C1 and C2, the determinant of coeffi-
cients of Eq. (15) should vanish. This leads to a nonlinear equation
in the eigenvalue k, which can be obtained using numerical meth-
ods, such as the bisection technique. The lowest k gives the funda-
mental frequency of the plate as x ¼ ðk=LÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0=hq0

p
.

For the case where the edge y = 0 is clamped and the edge y = 1
is simply supported, Eq. (12b) is replaced by

Yð1Þ ¼ 0; Y 00ð1Þ ¼ 0 ð16Þ

For the case where the edges y = 0, 1 are both clamped, Eq. (12b) is
replaced by

Yð1Þ ¼ 0; Y 0ð1Þ ¼ 0 ð17Þ

x 

y 

L 

aL 

Fig. 1. A plate graded in the plate plane.

1048 D.Y. Liu et al. / Composite Structures 92 (2010) 1047–1051



Download English Version:

https://daneshyari.com/en/article/253210

Download Persian Version:

https://daneshyari.com/article/253210

Daneshyari.com

https://daneshyari.com/en/article/253210
https://daneshyari.com/article/253210
https://daneshyari.com

