Contents lists available at SciVerse ScienceDirect

European Journal of Pharmacology

journal homepage: www.elsevier.com/locate/ejphar

Immunopharmacology and Inflammation

C-Kit controls IL-1 β -induced effector functions in HMC-cells

Sebastian Drube *, Frederike Schmitz, Christiane Göpfert, Franziska Weber, Thomas Kamradt

Institut für Immunologie, Universitätsklinikum Jena-Friedrich-Schiller-Universität Jena, 07743 Jena, Germany

ARTICLE INFO

Article history: Received 25 May 2011 Received in revised form 16 November 2011 Accepted 27 November 2011 Available online 8 December 2011

Keywords: IL-1β c-Kit Cross-activation Mast cell

1. Introduction

Interleukin (IL)-1 and IL-33 are members of the IL-1 family and their receptors belong to the Toll/interleukin-1 receptor (TIR) superfamily. Members of this superfamily are crucial for protective and pathogenic host responses to injury and infection (Arend et al., 2008; Liew et al., 2010; Nold et al., 2010). IL-33 and IL-1B use similar receptor systems and activate similar signalling pathways. Signalling via the IL-1 receptor type 1 (IL-1 receptor 1) and IL-33 receptor is dependent on the IL-1 receptor accessory protein (IL-1RAcP). Stimulation of the IL-1 receptor 1 or the IL-33 receptor induces a ligand dependent association with the IL-1 receptor accessory protein (Ali et al., 2007: Chackerian et al., 2007: Wesche et al., 1997). Similar to other members of the TIR superfamily. the cytosolic TIR domain of the IL-1 receptor 1 and the IL-33 receptor dimerise with the TIR domain of the adaptor protein MyD88 (Brint et al., 2004; Schmitz et al., 2005). The IL-1 receptor 1-associated kinase (IRAK)-1, IRAK4 and the TNF-receptor-associated factor 6 (TRAF6) are subsequently recruited and activate mitogen-activated protein kinases (MAPK) and the transcription factor NFKB (Ali et al., 2007; Ho et al., 2007; Iikura et al., 2007; Mitcham et al., 1996; Schmitz et al., 2005). Recently, we reported that the IL-33 receptor cross-activates the receptor tyrosine kinase c-Kit in the human mast cell line HMC-1.1, expressing a constitutively active c-Kit mutant. Furthermore, cross-activated c-Kit is required to mediate IL-33-induced cytokine release (Drube et al., 2010). Here we investigated whether mutated and constitutively active c-Kit also mediates IL-1_β-induced signalling and effector functions.

ABSTRACT

The receptor tyrosine kinase c-Kit is important for mast cell differentiation, proliferation, and cytokine release. Recently, we reported that c-Kit acts as an intermediate signalling molecule regulating IL-33-induced signalling and effector functions in mast cells. Here, we investigated the influence of c-Kit on the IL-1 β -induced signalling and effector functions in HMC mast cell lines. HMC-cells were stimulated with IL-1 β and the resulting signalling and cytokine responses were analysed. Furthermore, we used pharmacological inhibitors to investigate the relevance of several signalling molecules for the IL-1 β -induced signalling and cytokine responses. Treatment of HMC-cells with the c-Kit inhibitor STI571 blocked the IL-1 β -induced activation of Erk1/2 and JNK1/2 but not p38 and NF κ B. Furthermore, inhibition of these signalling in mast cells branches into c-Kit- dependent and -independent pathways, both relevant for IL-6 release. Therefore, c-Kit is an important regulator of IL-1 receptor 1-induced signalling and effector functions in HMC-cells.

Treatment of HMC-1.1-cells with the tyrosine kinase inhibitor STI571 inhibited IL-1 β -induced activation of Erk1/2 and JNK1/2 whereas the activation of p38 and NF κ B was not affected. This indicates that the IL-1 β -induced signalling branches into c-Kit-dependent and -independent signalling in HMC-1.1-cells. Interestingly, both the c-Kit-dependent and -independent signalling pathways are necessary for IL-1 β -induced cyto-kine release in HMC-1.1-cells.

2. Material and methods

2.1. Cell lines

The human mast cell lines HMC-1.1 and HMC-1.2 (provided by Dr. J. H. Butterfield, Mayo Clinic, Rochester, MN) and the murine mast cell line P815 were cultured in RPMI supplemented with 10% foetal calf serum (Sigma), 1% antibiotics (Biochrom) and 50 μ M mercaptoethanol as previously described (Drube et al., 2010).

2.2. Flow cytometry

For annexin V staining, cells were left untreated or were treated with the tyrosine kinase inhibitor 4-[(4-methyl-1-piperazinyl)methyl]-N-[4methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl] amino] phenyl]-methanesulfonate-benzamide (STI571) (5 μM) [provided by Dr. F.-D. Böhmer, Centre of Medical Biomedicine, Jena (Bohmer et al., 2003)] as indicated. Subsequently, cells were harvested and washed with PBA (0.25% BSA; 0.02% Natriumazide in PBS). Apoptotic cells were detected with FITC (5 (6)-fluorescein isothiocyanate)-conjugated annexin V according to manufacturer's instructions (BD Bioscience). For determination of IL-33 receptor- and c-Kit-surface expression, cells were harvested and washed

 ^{*} Corresponding author at: Institut für Immunologie, Universitätsklinikum Jena, Leutragraben 3, 07743 Jena, Germany. Tel.: +49 3641 938783; fax: +49 3641 938782.
E-mail address: Sebastian.Drube@mti.uni-jena.de (S. Drube).

^{0014-2999/\$ -} see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.ejphar.2011.11.035

with PBA (0.25% BSA; 0.02% Natriumazide in PBS). Non-specific binding of antibodies was blocked with anti-CD16/CD32 (clone 2.4G2) and rat-IgG (Jackson). Cells were stained with biotinylated anti-human IL-33 receptor antibody (Baf523; R&D-systems), and PE (Phycoerythrin)-conjugated Streptavidin (eBioscience) or with anti-human-(Allophycocyanin (APC)-conjugated) c-Kit antibody (eBioscience). Cells were acquired using a LSRII flow cytometer (BD Bioscience) and evaluated with FlowJo 8.1.1 (Treestar Inc.).

2.3. Mice

Mice were kept under specific pathogen-free conditions. All experiments were conducted in accordance with federal, state, and institutional guidelines. We used sex- and age-matched wt C57BL/6 or *Kit*^{W-sh/W-sh} (provided by Prof. M. Maurer, Charite, Berlin) for generation of bone marrow-derived mast cells (BMMCs).

2.4. BMMC generation

BMMCs were generated from the femoral bone marrow by culturing in complete IMDM (PAA) supplemented with 20 ng/ml rmIL-3 (Peprotech), 10% foetal calf serum, and 1% antibiotics. BMMCs were used after 4 weeks of culture and consisted of 95% mast cells as identified by the surface expression of Fc ϵ -receptor I, c-Kit, and IL-33 receptor.

2.5. Cell stimulation and lysis

HMC1.1-, HMC1.2- and P815-cells (106/ml) were serum-starved over night. BMMCs were cultured in complete IMDM containing 10% foetal calf serum and 1% antibiotics without IL-3 1 h prior to stimulation. Cells were pre-incubated for 30 min with the soluble IL-33 receptor, the soluble IL-1 receptor 1 (both R&D), soluble c-Kit (Symansis), or with the tyrosine kinase inhibitor STI571. Subsequently, cells were stimulated with IL-1 β (Peprotec). Cells were lysed with lysis buffer [20 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), pH7.5; 10 mM EGTA (ethylene glycol tetraacetic acid); 40 mM β-Glycerophosphate; 2.5 mM MgCl₂; 2 mM orthovanadate; 1 mM DTT (Dithiothreitol); 1 mM PMSF (phenylmethylsulfonyl fluoride); 20 µg/ ml Aprotinin; 20 µg/ml Leupeptin supplemented with 1% Triton]. For ELISA experiments cells were pre-incubated for 30 min with the soluble IL-33 receptor, the soluble IL-1 receptor 1, soluble c-Kit, or inhibitors [the tyrosine kinase inhibitor, STI571, the MEK-inhibitor UO126 (1,4-Diamino-2,3-dicyano-1,4-bis (2-aminophenylthio) butadiene), the JNK-inhibitor SP600125 (Anthra [1,9-cd] pyrazol-6 (2H)-one, 1,9-pyrazoloanthrone), the p38-inhibitor (2-(4-Chlorophenyl)-4-(4-fluorophenyl)-5- pyridin-4-yl-1,2-dihydropyrazol-3-one) or the NFkB-inhibitor (6-Amino-4-(4-phenoxyphenylethylamino) quinazoline) (all Calbiochem)]. Supernatants were collected and analysed by ELISA for IL-4, IL-6, and IL-8 (Immunotools).

2.6. Immunoblotting

Lysates were separated on 10% SDS-Laemmli gels and transferred by electroblotting onto nitrocellulose membranes. Membranes were blocked with dry milk and incubated with primary antibodies detecting phosphorylated signalling molecules [anti-pT183/pY185-JNK-1/2, anti-pT183/pY182-p38, anti-pY719-c-Kit, anti-pS536-p65-NFkB, anti-pT202/ pY204-p44/42 (all Cell Signalling Technology)], tubulin [as the loading control (Sigma)] or caspase-3 (Santa Cruz). Membranes were washed in 0.1% Tween/TBS and incubated with the respective HRP-conjugated secondary antibodies: anti-rabbit-Ig or anti-mouse-Ig (Pierce). Detection was performed using enhanced chemiluminescence (ECL) reagent (Pierce).

2.7. Proliferation assays

HMC-1.1-cells were cultured in presence or absence of STI571 for 72 h. $[^{3}H]$ -thymidine (1 µCi) in 25 µl culturing medium was added to each well for the last 18 h. Incorporated radioactivity was measured using a scintillation-gamma counter (Perkin Elmer).

2.8. Statistical analysis

Cytokine concentration is indicated as the mean of quadruple measurements \pm standard deviation. The statistical analysis was performed with SPSS 11.5. For significance analysis the Student's *t*-Test was used (*P*<0.05 marked with *).

3. Results

3.1. IL-1_β-induced signalling and cytokine release in HMC-1.1-cells

HMC-1.1-cells express the IL-1 receptor 1 (Kandere-Grzybowska et al., 2006). Confirming and extending earlier results (Kandere-Grzybowska et al., 2006), we found that stimulation of HMC-1.1-cells with IL-1 β induced a time-dependent activation of Erk1/2, JNK1/2, p38, NF κ B (Fig. 1A), and the release of IL-6 (Fig. 1B) and IL-8 (data not shown) but not the release of IL-4 (data not shown). Next, we investigated the IL-1 β -induced cyto-kine response in P815-cells. Stimulation of these cells with IL-1 β induced a time-dependent IL-6 production (data not shown). These data show that IL-1 β induced the activation of several signalling pathways and the production of cytokines in different mast cell lines.

Fig. 1. IL-1 β -induced signalling and cytokine release in HMC-1.1-cells. (A) HMC-1.1cells were stimulated with IL-1 β (50 ng/ml). Cell lysates were separated by SDS-PAGE, blotted, and probed with anti-pErk1/2, -pJNK1/2, -pp38, -pp65-NFkB, and -tubulin antibodies. (B) HMC-1.1-cells were stimulated with IL-1 β (both 50 ng/ml) as indicated. Supernatants were analysed for IL-6.

Download English Version:

https://daneshyari.com/en/article/2532431

Download Persian Version:

https://daneshyari.com/article/2532431

Daneshyari.com