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a b s t r a c t

A two-dimensional theory of functionally graded plates is presented using a mixed variational approach.
The theory accounts for a displacements field in which the in-plane displacements vary linearly through
the plate thickness, while the out-of-plane displacement is a second-degree function of thickness coor-
dinate. The advantages of the present theory are that it contains both the transverse normal strain and
stress in complete consistence with the boundary conditions at the top and bottom surfaces of the plates
without loss of its simplicity. Therefore, the rationale for the shear correction factor used in such theories
is obviated. The bending and free vibration problems of isotropic plates with material properties varying
in the thickness direction are solved. Numerical results for frequencies are presented for two-phase
graded material with a power-law through the plate thickness variation of the volume fractions of the
constituents based on Mori–Tanaka scheme. In addition, numerical results of transverse deflections are
obtained for FG simply supported isotropic plates with Young’s modulus varying exponentially through
the thickness and constant Poisson’s ratio. The validity of the present theory is investigated by comparing
some of the present results with their counterparts obtained due to three-dimensional approaches by
Qian et al. and by Kashtalyan. The influence of the transverse normal strain on the bending and vibration
of the FG plates is illustrated.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) are a class of composites
that have a continuous variation of material properties from one
surface to another. These materials can be fabricated by varying
the percentage content of two or more materials such that the
new materials have the desired property gradation in spatial direc-
tions. The gradation in the properties of the materials reduces ther-
mal stresses, residual stresses and stress concentration factors
found in laminated composites. FGMs have gained widespread
applicability as thermal-barrier structures, wear- and corrosion-
resistant coatings other than joining dissimilar materials. The con-
cepts of FGMs were proposed by the Japanese Yamanouchi et al. [1]
and Koizumi and Sata [2], and are projected as thermal barrier
materials for applications in space planes, space structures and nu-
clear reactors.

Several studies have been performed to analyze the mechanical
or the thermal or the thermo-mechanical responses of FG plates
and shells. A comprehensive review is done by Tanigawa [3]. Reddy
[4] has analyzed the static behavior of functionally graded rectan-
gular plates based on his third-order shear deformation plate the-

ory. Cheng and Batra [5] have related the deflections of a simply
supported FG polygonal plate given by the first-order shear defor-
mation theory and third-order shear deformation theory to that of
an equivalent homogeneous Kirchhoff plate. Cheng and Batra [6]
have also presented the results for the buckling and steady-state
vibrations of a simply supported functionally graded polygonal
plate based on Reddy’s plate theory. Loy et al. [7] have studied
the vibration of FG cylindrical shells using Love’s shell theory. Qian
et al. [8,9] employed the meshless local Petrov–Galerkin method to
analyze free and forced vibrations of both homogeneous and FG
thick plate based on the higher-order shear and normal deformable
plate theory of Batra and Vidoli [10]. In this work, computed fre-
quencies for a simply supported FG plate were found to match well
with those obtained from the analytical solution of three-dimen-
sional (3D) elasticity equations of Vel and Batra [11]. For a simply
supported plate, Vel and Batra [11] used the classical plate theory,
the first-order shear deformation (FSDT), and the third-order shear
deformation (TSDT) approximations [12] for the displacement
fields, assumed each displacement component to vary sinusoidally
in the x- and the y-directions, and derived an algebraic equation for
the frequencies. The assumed forms of displacements satisfy
boundary conditions at the plate edges only when they are simply
supported. Ferreira et al. [13] used the collocation multiquadric
radial basis functions to analyze static deformations of simply
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supported FG plates modeled by a third-order shear deformation
theory and a meshless method. Brischetto and Carrera [14] de-
duced advanced theories for bending analysis of FG plates using
the Reissner mixed variational approach. Other recent studies on
the two-dimensional models of FG plates may be found in [15–18].

Although there are several three-dimensional (3D) solutions
available for inhomogeneous plates, most of these studies are for
laminated plates consisting of homogeneous laminae [19,20]. Ana-
lytical 3D solutions for plates are useful since they provide bench-
mark results to assess the accuracy of various 2D plate theories and
finite element formulations. Main and Spencer [21] established a
class of exact 3D solutions for FG plates with traction-free surfaces.
An asymptotic 3D theory of thermo-mechanical deformations of
FG rectangular plates was developed by Reddy and Cheng [22].
Woo and Meguid [23] developed series solutions for large deflec-
tions of FG plates under transverse loading and a temperature field
using von-Karman theory. Khoma [24] developed a method of con-
structing a general solution of the equilibrium equations for inho-
mogeneous transversely isotropic plates with elastic moduli that
depend linearly on the transverse co-ordinate. Vel and Batra [25]
presented a 3D solution for the cylindrical bending vibration of
simply supported FG thick plates. They used displacement func-
tions that identically satisfy boundary conditions to reduce the
equations of motion to a set of coupled ordinary differential equa-
tions with variable coefficients, which are then solved by the
power series method. Tsukamoto [26] examined thermal stresses
in a ceramic–metal plate subjected to through-thickness heat flow
using the Mori–Tanaka scheme and the classical laminated plate
theory. Kashtalyan [27] obtained a 3D elasticity solution for a FG
simply supported plates from the Plevako [28] general solution
of the equilibrium equations for inhomogeneous isotropic media.
Cheng and Batra [29] used an asymptotic expansion method to
analyse three-dimensional thermoelastic deformations of FG ellip-
tic plates, rigidly clamped at the edges. Power-law dependence of
material properties on the thickness coordinate was assumed.
The material properties were assumed to have power-law depen-
dence on the thickness coordinate. Shen [30], and Yang and Shen
[31] studied large deflections and postbuckling response of FG
plates with temperature-dependent material properties using a
classical plate theory and perturbation method.

A great deal of effort has been expended to keep the balance be-
tween an accurate representation and simplicity of formulation.
Therefore, the equivalent single-layer theories for laminated or
FG plates, from an engineering point of view, are still the most
attractive approaches due to their simplicity and law computa-
tional cost.

The objective of this investigation is to present a refined equiv-
alent single-layer shear deformation theory for orthotropic FG
plates. This theory is obtained using a modified version of the
mixed variational principle of Reissner [32,33]. The theory
accounts for a displacements field in which the in-plane displace-
ments vary linearly through the plate thickness, while the out-of-
plane displacement is a parabolic function of thickness coordinate.
The advantages of the present theory are that it contains both the
transverse normal strain and stress in complete consistence with
the boundary conditions at the top and bottom surfaces of the
plates without loss of its simplicity. Therefore, the rationale for
the shear correction factor used in such theories is obviated. The
bending and free vibration problems of isotropic plates with mate-
rial properties varying in the thickness direction are solved.
Numerical results for frequencies are presented for two-phase
graded material with a power-law through the plate thickness
variation of the volume fractions of the constituents based on
Mori–Tanaka scheme. In addition, numerical results of transverse
deflections are obtained for FG simply supported isotropic plates
with Young’s modulus varying exponentially through the thickness

and constant Poisson’s ratio. The validity of the present theory is
investigated by comparing some of its results with results obtained
due to three-dimensional approaches by Qian et al. [34], and by
Kashtalyan [27]. The influence of the transverse normal strain on
the bending and free vibration responses of the FG plates is
illustrated.

2. Theoretical formulation

An elastic plate of uniform thickness h, length a and width b is
considered in a Cartesian coordinate system x; y and z. The plate is
composed of an orthotropic elastic material which is smoothly gra-
dient in the thickness direction. The plate occupies the following
region:

0 6 x 6 a; 0 6 y 6 b; �h=2 6 z 6 h=2:

Let the top surface z ¼ h=2 and the bottom surface z ¼ �h=2 of the
plate be subjected to the following traction field:

t̂ðx; y;þh=2Þ ¼ ðPþ1 ; P
þ
2 ;�q1Þ;

t̂ðx; y;�h=2Þ ¼ ðP�1 ; P
�
2 ;þq2Þ:

ð1Þ

Thus, the boundary conditions on the plate surfaces are:

r33 ¼ �q1; r23 ¼ Pþ2 ; r13 ¼ Pþ1 ; at z ¼ þh=2
r33 ¼ �q2; r23 ¼ P�2 ; r13 ¼ P�1 ; at z ¼ �h=2; ð2Þ

where rijði; j ¼ 1;2;3Þ denote the stress components.
For convenience, the notation q ¼ q2 � q1 will be used. Normal

pressures are retained on both faces in order that one of them
may, if desired, be made proportional to transverse displacement
to simulate the effect of an elastic foundation.

For the present formulation, a modified version [32,33] of the
mixed variational formula of Reissner is used for a composite elastic
body with mixed boundary conditions such that a surface force F�i is
prescribed over a part Sr of the surface S of the body and a displace-
ment u�i is prescribed over the remainder surface SuðS ¼ Sr þ SuÞ;
the mixed variational formula may be written in the form:

J ¼
Z t2

t1

Z Z Z
V

1
2
q _ui _ui þ RðrijÞ � rijeij þ Fiui

� �
dV

8<
:
þ
Z Z

Sr

F�i uidsþ
Z Z

Su

njðrijuiÞds

9=
;dt; ð3Þ

where q is the material density of the plate, Fi is the body force, nj is
a unit vector along the outward normal to the surface S, and RðrijÞ is
the complementary energy density which takes the form:

RðrijÞ ¼ aijklrijrkl; ð4Þ

where aijkl are the stiffness terms of the plate which depend on the
material properties.

In the mixed variational formula (3), since the stresses and the
displacements are taken to be arbitrary, the non-vanishing stresses
components may be assumed without any dependence on the dis-
placement components in the form:

rij ¼ Gð1Þij ðx; yÞ þ zGð2Þij ðx; yÞ; ði; j ¼ 1;2Þ;

ri3 ¼ Gi3ðx; yÞ 1� z
h=2

� �2
" #

þ Pþi
4

c1 þ c2
z

h=2

� �� �
1þ z

h=2

� �

þ P�i
4

c3 þ c4
z

h=2

� �� �
1� z

h=2

� �
; ði ¼ 1;2Þ;

r33 ¼ Gð1Þ33 ðx; yÞ þ zGð2Þ33 ðx; yÞ
� �

1� z
h=2

� �2
" #

þ
X4

n¼1

zn�1Snðx; yÞ: ð5Þ
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