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a b s t r a c t

Fibre-reinforced materials are nowadays used in many different fields of applications due to their good
load bearing capacity under general stress state and to their fracture and fatigue resistance. The use of
reinforcing fibres, especially in brittle or quasi-brittle materials, generally allows a reduction of the man-
ufacturing costs and to get more elevated performance with respect to traditional materials. In the pres-
ent paper, a continuum finite element (FE) formulation to analyse fracture mechanics problems for fibre-
reinforced and in plain brittle or quasi-brittle materials involving discontinuity of the displacement field
is developed. By employing an energy approach, an appropriate stress field correction is introduced to
simulate the displacement discontinuity (crack) and the mechanical effects of the fibres on the matrix
material, and a new FE formulation is used to simulate the behaviour of such a class of materials. Finally,
some simple 2D examples are presented in order to evaluate the capability of the proposed computa-
tional approach.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The low values of fracture toughness for brittle materials (such
as ceramics, concrete, and so on) can be increased by reinforcing
them with fibres which increase tensile strength and connect the
faces of the crack that can appear in the matrix material, with
the beneficial effect to prevent its propagation. Several papers have
been published on the mechanical characterisation of fibre-rein-
forced materials [1–6], while others studies have been conducted
to investigate the behaviour of a tensile crack, situated in a fibre-
reinforced composite material (see, for example, Refs. [7–16]).

Experimental observations show that the size of the crack
bridging zone depends on the mechanical properties of the fibres
and the matrix, and also on the adhesion strength of their connec-
tion. One of the most important issue is the knowledge of the
deformation law of the fibres in the bridging zone and the possibil-
ity to account their possible pull-out from the matrix.

The numerical simulation of the mechanical behaviour of fibre-
reinforced brittle solids presents several difficulties due to the
need to describe crack formation and propagation in a heteroge-
neous material (matrix and fibres). As is well known, the formation
of a discontinuity in a solid can produce computational instabilities
which can show a non-uniqueness of the problem solution [17].

The simulation of the fracture process in brittle fibre-reinforced
materials must consider at the same time the strain localisation
that occurs in the cracked zone as well as the bridging effect pro-
duced by the fibres which cross the crack faces with the possibility
of interface debonding; all the above mentioned phenomena leads

to a highly non-linear problem which presents hard difficulties in
computational simulation.

By using a new simple stress-based implementation of the
mechanical effects of a discontinuous displacement field within
an element [18] and a simple ad hoc mechanical model for fibre-
reinforced materials with short and randomly dispersed fibres
[19–21], a new FE formulation for such a class of materials is pro-
posed in the present paper. In particular, this paper presents the
stress-based discontinuous-like finite element and the mechanical
model for fibre–matrix overall characterisation by taking into ac-
count at the same time partial or complete fibre debonding and
elastic–plastic behaviour of the matrix material.

Finally, some simple 2D problems are presented to investigate
the simulation capabilities of the proposed model by considering
several values of the main mechanical parameters involved such
as the fracture energy, the limit stress and the friction fibre–matrix
interface shear stress.

2. Formulation of the problem

The description of the mechanical behaviour of fibre-reinforced
brittle or quasi-brittle solids presents many difficulties since sev-
eral mechanisms such as crack formation and propagation in a het-
erogeneous material – in which fibres can broke or slide with
respect to the matrix – must be considered at the same time. The
equilibrium of a body can be stated as:

div rþ b ¼ 0 in B
n � r ¼ t on Ct

u ¼ u on Cu

ð1Þ
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The microscopic incremental elastic constitutive relationship
can be written as:

rðxÞ ¼ CðxÞ � eðxÞ ¼ CðxÞ � ðrs � uÞ ð2Þ

where e is the strain tensor and the symbols ‘‘rs” and ‘‘�” stand for
symmetric gradient and tensor operator product, respectively. The
fourth-order elastic tensor C(x) presents high variability with re-
spect to the location where it is evaluated, as is shown by the

dependence on the position vector x. From a microscopic point of
view, mechanical characteristics, such as the Young modulus E(x)
etc., in a heterogeneous material can be theoretically written in
the following form:

EðxÞ ¼ Em � jðxÞ þ Ef � vpðxÞ ð3Þ

where the functions j(x), vp(x) can assume the following meaning:

Nomenclature

Am; Ap
f cross section area of the matrix and of the fibres belong-

ing to the pth fibre phase in the REV, respectively
b body force vector field
B region occupied by a generic body
B, B(x) generic compatibility matrix, compatibility matrix eval-

uated at the location x of the finite element, respectively
BþðxÞ ¼

P
i2Xþe BiðxÞ sum of the compatibility matrices’ values

evaluated at location x 2 Xþe
c, / cohesion and internal friction angle of the material
CðxÞ; CmðxÞ; C0mðxÞ generic elastic tensor, elastic tensor and tan-

gent elastic tensor of the matrix, respectively, evaluated
at location x

Ceq; C0eq homogenised elastic tensor and tangent homogenised
elastic composite tensor, respectively

a, D characteristic microscopic and macroscopic length,
respectively

D element nodal discontinuity matrix
Ef Fibre’s Young modulus
Em, Et matrix Young’s modulus and post-yielding stress–strain

slope of the material
E0f tangent Fibre’s Young modulus
ft, fc material’s tensile and compressive strength, respec-

tively
fðiÞe;u; fðiÞe;ext unbalanced and external force vector in the FE ‘e’ at step

i, respectively
Fðrij; k1; . . . ; knÞ ¼ 0 yield function
Gf fracture energy per unit crack surface
H = Et/(1 � Et/Em) yield hardening parameter
H(x) heaviside jump function located at x
Gm shear modulus of the matrix material
k unit vector parallel to the generic fibre axis
i, j unit vectors normal and perpendicular to the crack

direction, respectively
k1; . . . ; kn hardening parameters of the yield function
2Lp

f length of the fibres belonging to the pth fibre phase
nn number of nodes in a cracked FE lying in one of the two

parts separated by the crack
N, N(x) generic shape functions matrix of a finite element and

shape functions matrix evaluated at the location x,
respectively

NþðxÞ ¼
P

i2Xþe NiðxÞ sum of the shape functions evaluated at the
location x 2 Xþe

p fibre’s perimeter length
REV reference elementary volume
rc crack surface roughness
sn, ss correction factors to account for crack bridging and slid-

ing effects, respectively

s em
f

� �
; s em

f

� �
sliding function such that: sef�mt ¼ em

f � 1� s em
f

� �h i
and mean value of the sliding function along a single fibre,
respectively

S discontinuity locus in a cracked solid
t surface traction force vector field
uc, vc normal and parallel component to the crack of the rela-

tive displacement vector across the crack, respectively

u0 minimum opening crack displacement corresponding to
the crack formation

u; u displacement field and prescribed displacement field on
Cu, respectively

V volume of the composite REV
Vm, Vf,p volume of the matrix phase and of the pth fibre phase

fraction present in the REV, respectively
wc ¼ uc þ vc ¼ uciþ vcj relative displacement vector across the

crack faces
W mean fibre’s elastic energy density
x generic position vector
dd(x) discontinuous part of the displacement field
ds Dirac delta function located in S
dw,s = du,s + dv,s displacement vector discontinuity in a FE as a sum

of the normal and tangential discontinuous compo-
nents, respectively

dðxÞ; dðxÞ; _dðxÞ displacement vector, continuous part and incre-
mental displacement vector, respectively, in a generic
solid or in a finite element

½½dðxÞ�� ¼ wðxÞ jump displacement vector in a generic point x e S
of a solid or in a finite element

e(x) strain tensor evaluated at the location x
ef ; em

f ; em
f uniaxial fibre’s strain, uniaxial matrix strain and mean
strain measured at the location and in the fibre’s direc-
tion, respectively

ep;f limit strain for the pth fibre–matrix interface
strain jump between the fibre and the matrix (parallel
to fibre’s axis) in the case of imperfect bond

eb(x), eu(x) bounded and unbounded part of the strain tensor
evaluated at the location x, respectively

e0el; e0pl elastic and plastic part of the strain rate tensor
_k plastic multiplier
r(x) stress tensor evaluated at the location x
rc(uc) stress–crack opening displacement relationship
r stress tensor
rf ; r

0
f Fibre’s stress and stress rate tensor at the location of the

generic fibre, respectively
rY initial yield stress of the material
j(x), vp(x) point function denoting the presence of the matrix or

of a fibre, belonging to the pth phase, at the location x,
respectively

l = Vm/V REV matrix volume fraction
gf,p = Vf,p/V REV fibre volume fraction of the pth fibre phase,

p = 1, . . . , q
s, sau, sfu fibre–matrix interface shear stress, maximum and fric-

tion fibre–matrix interface shear stress, respectively
sc(uc) shear stress–crack opening displacement relationship
X, X+, X� region occupied by a FE and regions separated by a

crack in a FE, respectively
C = Ct

S
Cu boundary of a generic solid

Ct, Cu portions of the boundary on which tractions and dis-
placements are prescribed, respectively
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