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a b s t r a c t

An RVE-based micromechanical elastic damage model considering fiber size dependency is presented to
predict the effective elastic moduli and interfacial damage evolution in fiber-reinforced composites. To
assess the validity of the present model, the predictions based on the proposed micromechanical elastic
model are compared with Hashin’s theoretical bounds [Hashin Z. Analysis of properties of fiber compos-
ites with anisotropic constituents. J Appl Mech: Trans ASME 1979;46:543–50]. The proposed microme-
chanical elastic damage model is then exercised under uniaxial loading conditions to show the overall
elastic damage behavior of the proposed micromechanical framework and to illustrate fiber size effect
on the behavior of the composites. Moreover, comparisons between the present prediction and experi-
mental data are made to further illustrate the capability of the proposed micromechanical framework
for predicting the elastic damage behavior of fiber-reinforced composites.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Various theoretical and numerical models for the prediction of
behavior of fiber-reinforced composites have been proposed by
many researchers and engineers. Since traditional continuum
models based on the continuity, isotropy and homogeneity of
materials cannot directly solve the problems of heterogeneous
composites, micromechanics-based models have been extensively
used to solve the problems on a finer scale and to relate the
mechanics of materials to their microstructure [2,3]. Refer to Hill
[4,5], Hashin [6], Willis [7], Mura [8], Zhao and Weng [9], Nemat-
Nasser and Hori [10], Ju and Chen [11,12], Ju and Zhang [13], Lee
[14], Lee and Simunovic [2], Lee and Liang [15], Lee and Kim
[16], and Lee and Pyo [17] for micromechanics-based elastic com-
posite modeling, and Ju and Chen [18], Ju and Tseng [19,20], Ju and
Lee [21,22], Ju and Sun [23], Ju and Zhang [24], Lee and Simunovic
[3], and Lee and Pyo [25] for micromechanics-based elastoplastic
composite modeling.

The Eshelby’s inclusion solution, which was derived based on
the assumption that an inclusion is embedded in an unbounded
infinite space, has been widely used in the existing micromechan-
ics-based material models. However, the (classical) Eshelby’s ten-
sor is size independent with the prescribed uniform eigenstrains
inside the inclusion and is valid only in case the size of the inclu-
sion is relatively small in comparison with that of the representa-
tive volume element (RVE) [26]. Since the size of every RVE, in fact,

is finite and the Eshelby’s tensor needs to be dependent on the size
of the inclusion [26,27].

Damage mechanisms in fiber-reinforced composites are compli-
cated evolutionary phenomena and, therefore, the understanding of
the damage is important for the investigation of the fiber-rein-
forced composites. Many numerical and experimental researches
for the damage (or failure) phenomena have been conducted. Refer
to van den Heuvel et al. [28–33], Zhou et al. [34], Teng [35], Aghdam
et al. [36], Blassiau et al. [37,38] for details.

The present study aims to predict the effective elastic damage
behavior of fiber-reinforced composites considering fiber size
dependency. The size of the inclusion refers to the cross-section
of fibers (not the fiber length), which is of certain related to their
diameter. In the present study, a two-dimensional micromechani-
cal formulation for the behavior of fiber-reinforced composites
considering fiber size dependency is derived and a damage model
for evolutionary interfacial debonding between fibers and the ma-
trix is incorporated in the micromechanical formulation. The two-
dimensional finite Eshelby’s tensor [26,27] is adopted to consider
the fiber size dependency and to solve problems in the finite do-
main. The Weibull’s probabilistic function is incorporated into
the micromechanical formulation to model evolutionary interfacial
debonding between fibers and the matrix.

To assess the validity of the proposed micromechanical formu-
lation, the predictions based on the proposed micromechanical
elastic model are compared with Hashin’s theoretical bounds [1].
The proposed micromechanical elastic damage model is then exer-
cised under (transverse) uniaxial loading conditions to show the
overall elastic damage behavior of the proposed micromechanical
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framework and to illustrate fiber size effect on the behavior of the
composites. Furthermore, comparisons between the present pre-
diction and experimental data reported by Wang et al. [39] and
Li and Wisnom [40] are made to illustrate the capability of the pro-
posed micromechanical framework for predicting the elastic dam-
age behavior of fiber-reinforced composites.

2. Effective elastic damage behavior of circular fiber-reinforced
composites considering the finite RVE

2.1. Recapitulation of the finite Eshelby’s tensor

The summary of the finite Eshelby’s tensor [26,27] for a circular
inclusion embedded in a finite space is repeated here for complete-
ness of the proposed micromechanics-based constitutive model.
The finite Eshelby’s tensor is adopted to model circular fibers in
composites and is incorporated into the micromechanical frame-
work. The finite Eshelby’s tensor for a circular inclusion in a finite
isotropic space subjected to the prescribed displacement or trac-
tion boundary conditions was systematically derived by Li et al.
[26] and Wang et al. [27].

With consideration of a circular inclusion with radius r0 embed-
ded at the center of a finite, circular RVE with radius R as shown
Fig. 1, the perturbed strain field �p

ij due to the existence of inclusion
is related to the eigenstrain prescribed inside the inclusion as
[8,41,42]

�p
ijðxÞ ¼ SF

ijklðxÞ��kl ð1Þ

where the eigenstrain ��kl is given by

��klðxÞ ¼
��kl; if x 2 Xe

0; otherwise:

�
ð2Þ

The finite Eshelby’s tensor for a circular inclusion in a circular
finite RVE, denoted by SF

ijkl, subjected to Dirichlet (displacement)
boundary condition can be derived as [26]

SF
ijkl ¼

1
8ð1� mÞ ð4m� 1Þð1� q2

0Þ þ
3q2

0ðq2
0 � 1Þð1� 4mt2Þ
ð4m� 3Þ

� �
dijdkl�

�

þ ð3� 4mÞð1� q2
0Þ þ

3q2
0ðq2

0 � 1Þð2t2 � 1Þ
ð4m� 3Þ

� �
ðdikdjl þ dildjkÞ

þ 12ð2m� 1Þq2
0ðq2

0 � 1Þ
ð4m� 3Þ

� �
t2dijrkrl

�
ð3Þ

where dij signifies the Kronecker delta, m is the Poisson’s ratio of the
matrix, q0 ¼ r0=R;q ¼ r0=jxj; t ¼ q0=q, and riðxÞ ¼ xi

jxj ði ¼ 1;2Þ are
the components of the unit vector in the direction of the position
vector x [26,27].

In case of the Neumann (traction) boundary condition, the finite
Eshelby’s tensor can be derived as [27]

SF
ijkl ¼

1
8ð1� mÞ ð4m� 1Þð1� q2

0Þ � 3q2
0ð1� q2

0Þð1� 4mt2Þ
� �

dijdkl

�
þ ð3� 4mÞ þ q2

0 þ 3q2
0ð1� q2

0Þð1� 2t2Þ
� �

ðdikdjl þ dildjkÞ�
þ 12ð1� 2mÞq2

0ð1� q2
0Þt2� �

dijrkrl

	
ð4Þ

To simplify Eqs. (3) and (4), the averaging process over an inclu-
sion Xe is applied to the equations (cf. [26]).

ht2iXe
¼ 1

AXe

Z 2p

0

Z r0

0
rt2drdh ¼ a

2
;

ht2rkrliXe
¼ 1

AXe

Z 2p

0

Z r0

0
rt2rkrldrdh ¼ a

4
dkl ð5Þ

where h�iXe
signifies the average over an inclusion Xe; AXe ¼ pr2

0


 �
denotes the area of the inclusion, and a ¼ q2

0ð< 1Þ. Finally, the finite
Eshelby’s tensor in Eqs. (3) and (4) is simplified by applying the
aforementioned average process given in Eq. (5) as [26,27]

SF
ijkl ¼ S1dijdkl þ S2ðdikdjl þ dildjkÞ; i; j; k; l ¼ 1;2 ð6Þ

where the parameters S1 and S2 for the Dirichlet boundary condition
are given by

S1 ¼
1� a

8ð1� mÞ ð4m� 1Þ þ 3að1� aÞ
3� 4m

� �
;

S2 ¼
1� a

8ð1� mÞ ð3� 4mÞ � 3að1� aÞ
3� 4m

� �
ð7Þ

and the parameters S1 and S2 for the Neumann boundary condition
are given by

S1 ¼
1� a

8ð1� mÞ ð4m� 1Þ þ 3aða� 1Þ½ �;

S2 ¼
1

8ð1� mÞ ð3� 4mÞ þ að3a2 � 6aþ 4Þ
� �

ð8Þ

in which a ¼ q2
0. It is noted from Eqs. (7) and (8) that the finite

Eshelby’s tensor depends on the Poisson’s ratio of the matrix and
the ratio of the size of the inclusion to that of the RVE. As the ratio
of the size of the inclusion to that of the RVE becomes smaller
ða! 0Þ, the finite Eshelby’s tensor in Eq. (6) naturally converges
to the following infinite Eshelby’s tensor

S1ijkl ¼
4m� 1

8ð1� mÞ dijdkl þ
3� 4m

8ð1� mÞ ðdikdjl þ dildjkÞ; i; j; k; l ¼ 1;2 ð9Þ

where S1ijkl is the Eshelby’s tensor for a circular inclusion embedded
in an isotropic linear elastic and infinite matrix. Refer to Mura [8], Ju
and Zhang [13], Li et al. [26], Wang et al. [27] for more details of S1ijkl

and SF
ijkl.

2.2. Evolutionary damage model

Let us start by considering a two-phase composite consisting of
an elastic matrix (phase 0) with bulk modulus j0 and shear modu-
lus l0 and unidirectionally aligned, perfectly bonded elastic fibers
(phase 1) with bulk modulus j1 and shear modulus l1 in the ma-
trix. The evolutionary damage between fibers and the matrix may
occur as transverse loadings or deformations continue to increase.
After the evolutionary damage between fibers and the matrix, the
debonded circular fibers may lose the load-carrying capacity and
are assumed to completely debonded fibers (circular voids) (phase
2) for simplicity within the present framework. It is assumed that
circular fibers embedded in the matrix are long in the fiber direction
(the X3-axis) and the fiber and void orientation in the 1–2 plane is
random. With the help of the finite Eshelby’s tensor proposed by
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Fig. 1. A circular inclusion embedded in a finite representative volume element
(RVE) (see also Li et al. [26]).
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