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a b s t r a c t

In this paper, free vibration characteristics and the dynamic behavior of a functionally graded simply-
supported beam under a concentrated moving harmonic load are investigated. The system of equations
of motion is derived by using Lagrange’s equations under the assumptions of the Euler–Bernoulli beam
theory. Trial functions denoting the transverse and the axial deflections of the beam are expressed in
polynomial forms. The constraint conditions of supports are taken into account by using Lagrange mul-
tipliers. It is assumed that material properties of the beam vary continuously in the thickness direction
according to the exponential law and the power-law form. In this study, the effects of the different mate-
rial distribution, velocity of the moving harmonic load, the excitation frequency on the dynamic
responses of the beam are discussed. Numerical results show that the above-mentioned effects play very
important role on the dynamic deflections of the beam.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) were proposed in Japan
in around 1984–1985 during a space plane project. FGMs consist-
ing of metallic and ceramic components are well-known to im-
prove the properties of technical devices such as thermal barrier
systems, because cracking or delamination, which are often ob-
served in conventional two-layer composite systems, are avoided
due to the smooth transition between the properties of the compo-
nents in FGMs. Also, the gradual transition between the heat and
corrosion resistant outer layer (often made of a ceramic material)
and the tough metallic base material increases in most cases the
lifetime of the component. In nature, we can see examples of FGMs
in bamboo, bones, and teeth. In each case, there is a hard wear-
resistant exterior that smoothly transitions to a soft interior. FGMs
are of interest for a wide range of applications: thermal barrier
coatings for turbine blades (electricity production), armor protec-
tion for military applications, fusion energy devices, biomedical
materials including bone and dental implants, space/aerospace
industries, automotive applications, etc.

Studies devoted to understand the static and dynamic behavior
of the functionally graded beams, plates and shells have gained
importance in the last decades because of the wide application
areas of FGMs. Although homogeneous or classical composite
beams subjected to moving loads have been widely studied (see
Refs. [1–20]), the research effort devoted to vibration of FG beams

under the moving loads has been very limited. Sankar [21] gave an
elasticity solution based on the Euler–Bernoulli beam theory for
functionally graded beam subjected to static transverse loads by
assuming that Young’s modulus of the beam vary exponentially
through the thickness. Chakraborty et al. [22] proposed a new
beam finite element based on the first-order shear deformation
theory to study the thermoelastic behavior of functionally graded
beam structures. In [22], static, free and wave propagation analysis
are carried out to examine the behavioral difference of functionally
graded material beam with pure metal or pure ceramic. Chakr-
aborty and Gopalakrishnan [23] analyzed the wave propagation
behavior of FG beam under high frequency impulse loading, which
can be thermal or mechanical, by using the spectral finite element
method. Aydogdu and Taskin [24] investigated the free vibration
behavior of a simply supported FG beam by using Euler–Bernoulli
beam theory, parabolic shear deformation theory and exponential
shear deformation theory. Zhong and Yu [25] presented an analyt-
ical solution of a cantilever FG beam with arbitrary graded varia-
tions of material property distribution based on two-dimensional
elasticity theory. Ying et al. [26] obtained the exact solutions for
bending and free vibration of FG beams resting on a Winkler–Pas-
ternak elastic foundation based on the two-dimensional elasticity
theory by assuming that the beam is orthotropic at any point
and the material properties vary exponentially along the thickness
direction. Kapuria et al. [27] presented a finite element model for
static and free vibration responses of layered FG beams using an
efficient third order zigzag theory for estimating the effective mod-
ulus of elasticity, and its experimental validation for two different
FGM systems under various boundary conditions. Yang and Chen
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[28] studied the free vibration and elastic buckling of FG beams
with open edge cracks by using Euler–Bernoulli beam theory. Li
[29] proposed a new unified approach to investigate the static
and the free vibration behavior of Euler–Bernoulli and Timoshenko
beams. In a recent study by Yang et al. [30], free and forced vibra-
tions of cracked FG beams subjected to an axial force and a moving
load were investigated by using the modal expansion technique.

To the best of the authors’ knowledge, this is the first attempt
on the vibration of a FG beam subjected to a concentrated moving
harmonic load. In the study [30], it is assumed that material prop-
erties of the beam vary exponentially in the thickness direction and
the moving load is a constant moving load.

The aim of this paper is to investigate the free and forced vibra-
tion of a functionally graded simply-supported beam subjected to a
concentrated moving harmonic load. In the dynamic responses of
the beam, the space-dependent functions are chosen as the polyno-
mial functions. The system of equations of motion is derived by
using Lagrange’s equations under the assumptions of the Euler–
Bernoulli beam theory. The constraint conditions of supports are ta-
ken into account by using Lagrange multipliers. It is assumed that
material properties of the beam vary continuously in the thickness
direction according to the exponential law and the power-law form.
Equations of motion are solved by using the implicit time integra-
tion Newmark-b method, and then displacements, velocities and
accelerations of the beam at the considered point and time are
determined. In this study, the effects of the different material distri-
bution, velocity of the moving harmonic load, the excitation fre-
quency on the dynamic responses of the beam are discussed.
Numerical results show that the above-mentioned effects play very
important role on the dynamic deflections of the beam.

2. Theory and formulations

A functionally graded simply-supported beam of length L, width
b, thickness h, with co-ordinate system (O x y z) having the origin O

is shown in Fig. 1. The beam is subjected to a concentrated moving
harmonic load, Q(t), which moves in the axial direction of the beam
with constant velocity.

In this study, it is assumed that material properties of the beam,
i.e., Young’s modulus E and mass density q, vary continuously in
the thickness direction (z-axis) according to the exponential law
and the power-law form. Therefore, the material properties are
functions of the z coordinate, namely E = E(z) and q = q(z). The
exponential law is given by [31],

PðzÞ ¼ PU exp½�dð1� 2z=hÞ�; d ¼ 1
2

log
PU

PL

� �
ð1Þ

and the power-law introduced by [32] can be written as

PðzÞ ¼ ðPU � PLÞ
z
h
þ 1

2

� �k

þ PL ð2Þ

where PU and PL are the corresponding material properties of the
upper and the lower surfaces of the beam, and k is the non-neg-
ative power-law exponent which dictates the material variation
profile through the thickness of the beam. It is evident from
Eqs. (1) and (2) that when z = �h/2, P = PL and when z = h/2,
P = PU.

Nomenclature

A area of the cross section
Axx extensional rigidity
An time-dependent generalized coordinate of the trans-

verse displacements
b width of the cross section
Bn time-dependent generalized coordinate of the axial dis-

placements
Bxx coupling rigidity
c(t) unit step function
Dxx bending rigidity
EL Young’s modulus of the lower surface of the beam
EU Young’s modulus of the upper surface of the beam
F(t) generalized load vector
h depth of the cross section
I moment of inertia of the cross section
IA, IB, ID inertial coefficients
J functional of the problem
J* Lagrangian functional of the problem
k power-law exponent
K stiffness matrix
KS

5 . . . KS
8 matrices due to Lagrange multipliers

Ke kinetic energy of the beam
L length of the beam
M mass matrix of the beam
N number of the terms in the displacement functions
PL material properties of the lower surface of the beam

PU material properties of the upper surface of the beam
q(t) generalized coordinates
Q(t) concentrated moving harmonic load
Q0 amplitude of the moving harmonic load
t time
t1 time the load Q(t) comes onto the beam
t2 time the load Q(t) leaves the beam
u axial displacement
u0 axial displacement of any point on the neutral axis
U strain energy of the beam
v velocity of the moving harmonic load
V potential of the external loads
w transverse displacement
w0 transverse displacement of any point on the neutral axis
x x coordinate
xQ location of the concentrated moving harmonic load
z z coordinate
b1, b2, b3 Lagrange multipliers
exx normal strain
k dimensionless natural frequency
qL mass density of the lower surface of the beam
qU mass density of the upper surface of the beam
rxx normal stress
X excitation frequency of the moving harmonic load
x natural frequency
f a dimensionless parameter

Fig. 1. A functionally graded simply-supported beam subjected to a concentrated
moving harmonic load.
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