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The research works on the three-dimensional (3D) free vibration analyses of functionally graded (FG)
plates are limited to plates with simply supported boundary conditions and without elastic foundations.
Hence, the free vibration analysis of thick FG plates supported on two-parameter elastic foundation is
presented. The formulations are based on the three-dimensional elasticity theory. Plates with two oppo-
site edges simply supported and arbitrary boundary conditions at other edges are considered. A semi-
analytical approach composed of differential quadrature method (DQM) and series solution is adopted
to solve the equations of motions. The material properties change continuously through the thickness
of the plate, which can vary according to power law, exponentially or any other formulations in this
direction. The fast rate of convergence of the method is demonstrated and comparison studies are carried
out to establish its very high accuracy and versatility. Some new results for the natural frequencies of the
plate are prepared, which include the effects of elastic coefficients of foundation, boundary conditions,
material and geometrical parameters. The new results can be used as benchmark solutions for future

researches.
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1. Introduction

Functionally graded materials (FGMs) are special composite
whose thermo-mechanical properties have smoothly and contin-
uously spatial variation due to a continuous change in composi-
tion, in morphology, in microstructure, or in crystal structure.
FGMs posses various advantages over the conventional compos-
ite laminates, such as smaller thermal stresses, stress concentra-
tions, attenuation of stress waves, etc. Therefore, FGMs have
received wide applications as structural components in modern
industries such as mechanical, aerospace, nuclear, reactors, and
civil engineering.

The vibration characteristic of thick plates made of FGMs is of
great interest for engineering design and manufacture. Most of
the previous studies on the free vibration of FG plates are based
on the two-dimensional theories, such as the classical plate theory,
the first and the higher order shear deformation plate theories [1-
9]. These plate theories neglect transverse normal deformations,
and generally assume that a plane stress state of deformation pre-
vails in the plate. These assumptions may be appropriate for thin
plates, but may not give good results for thick plates with
length/thickness equal to 5 or less [10]. Yang and Shen [1] used
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the classical plate theory to study the free and forced vibration of
functionally graded rectangular thin plates subjected to initial in-
plane stresses and rested on elastic foundations. Cheng and Kitip-
ornchai [2] proposed a membrane analogy to derive an exact expli-
cit eigenvalues for vibration and buckling of simply supported FG
plates resting on elastic foundation using the first order shear
deformation theory (FSDT). Batra and Jin [3] used the FSDT coupled
with the finite element method (FEM) to study free vibrations of a
functionally graded (FG) anisotropic rectangular plate. Cheng and
Batra [4] used Reddy’s third-order plate theory to study steady
state vibrations and buckling of a simply supported functionally
gradient isotropic polygonal plate resting on a Pasternak elastic
foundation and subjected to uniform in-plane hydrostatic loads.
Yang and Shen [5] investigated the free and forced vibration anal-
yses of initially stressed functionally graded plates in thermal envi-
ronment. Theoretical formulations are based on Reddy’s higher
order shear deformation plate theory and include the thermal ef-
fects due to uniform temperature variation. Qian et al. [6] analyzed
static deformations, free and forced vibrations of a thick rectangu-
lar functionally graded elastic plate by using a higher order shear
and normal deformable plate theory (HOSNDPT) and a meshless lo-
cal Petrov-Galerkin (MLPG) method. Ferreira et al. [7] used the glo-
bal collocation method and approximate the trial solution with
multiquadric radial basis functions to analyze the free vibration
of functionally graded plates based on the first and the third-order
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shear deformation plate theories. Roque et al. [8] performed the
free vibration analysis of functionally graded plates by using the
multiquadric radial basis function method and a higher order shear
deformation theory. More recently, Matsunaga [9] analyzed the
natural frequencies and buckling stresses of FG plates using a high-
er order shear deformation theory which are based on the through
the thickness series expansion of the displacement components.

On the other hands, the research works on the three-dimen-
sional (3D) free vibration analyses of FG plates are limited to plates
with simply supported boundary conditions and without elastic
foundations [10-13]. In these works, in order to satisfy the edge
conditions, a trigonometric series solution is assumed in the plane
of the plate to transform the partial differential equations into a set
of ordinary differential equation in the thickness direction. Then,
different procedures such as power series solution [10], state space
method [11,12], and FEM [13] are employed to discretize the
resulting system of equations.

Plates on elastic foundations have been widely adopted by
many researchers to model interaction between elastic media
and plates for various engineering plate problems. However, the
vibration analyses of FG plates on elastic foundations are limited
and were performed based on the 2D theories [1,2,4,14]. This
apparent void has thus formed the motivation of the present work.
More recently, static analysis of simply supported FG beams [15]
and rectangular plates [16] based on the elasticity theory were
investigated using the state space method.

Here, the three-dimensional free of vibration analysis of FG
plates on elastic foundations with some different boundary condi-
tions are presented. FG plates with two opposite edges simply sup-
ported and arbitrary conditions at the other edges are considered.
The material properties are assumed to be graded in the thickness
direction and can vary according to power law distributions in
terms of the volume fractions of the constituents, exponentially
or any other formulations in this direction. A semi-analytical meth-
od, which makes use of a hybrid series solution and the dimen-
sional differential quadrature method [17-20], is employed.
Specially using DQM along the graded direction enables one to
accurately and efficiently discretize the variable coefficient partial
differential equations in this direction and implement the top and
bottom surface boundary conditions of the plate, which the later
includes the foundation effects. The accuracy and convergence of
the present method are demonstrated through numerical results.
A detailed parametric study is carried out to highlight the influ-
ences of thickness ratios, material property graded indexes, coeffi-
cients of elastic foundations and boundary conditions on the
vibration frequencies of FG thick plates.

2. Governing equations

Consider a thick FG plate rested on two-parameter elastic foun-
dations as shown in Fig. 1. A Cartesian coordinate system (x, y, z) is
used to label the material point of the plate in the unstressed ref-
erence configuration. The plate is supported on elastic foundations
at its lower surface. The Pasternak model is used to describe the
reaction of the elastic foundation on the plate.

The material properties of the plate are assumed to vary contin-
uously through the thickness of the plate. In this study, two differ-
ent variation laws for the material properties are considered:
power law and exponential distribution through the thickness.
However, the formulation is so general that other variation laws
of thickness coordinate can be easily implemented. Also, it is as-
sumed that the Poisson’s ratio v is constant. Based on the power
law distribution, the material elastic coefficients C; and the mass
density p are assumed to be in terms of a power law distribution
as follows,
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Fig. 1. FGM plate resting on elastic foundation.

Cy(2) = G + (G = C)(/hf, p(2) = pM + (0 = p™)(z/h)" (1)
where superscripts M and C refer to the metal and ceramic constit-
uents which denote the material properties of the bottom and top
surface of the plate, respectively; p is the power law index or the
material property graded index. On the other hands, for the expo-
nential distribution, it is assumed that the material properties vary
exponentially through the thickness of the plate as,

Ci(2) = CYfe®/M  p(z) = pMelZ/h 2

where y is the material property graded index.

Using the three-dimensional constitutive relations and the
strain—-displacement relations, the equations of motion in terms
of displacement components for a linear elastic FG plate with infin-
itesimal deformations can be written as
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where u, v, and w are the displacement components along the x, y
and z-axes; and C}j =% Egs. (3 and 4) represent the in-plane equa-
tions of motion along the x and y-axes, respectively; and Eq. (5) is
the transverse or out-of-plane equation of motion. The related
boundary conditions are as follows:
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where ¢y are the components of stress tensor; k,, and k, are the
Winkler and shearing layer elastic coefficients of the foundations.
Atx=0, a:

O = 07 O-zy = 07 Oz = { (6)

Eitheru=0or o, =0; eitherv=0or oy =0;

eitherw=0or g, =0 (7)
Aty=0,b:
Either u =0 or 65, =0; either v=0 or g,, = 0;

eitherw=0or g, =0 (8)
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