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a b s t r a c t

An atomistic based finite bond element model for the prediction of fracture and progressive failure of
graphene sheets and carbon nanotubes is developed by incorporating the modified Morse potential.
The element formulation includes eight degrees of freedom reducing computational cost compared to
the 12 degrees of freedom used in other FE type models. The coefficients of the elements are determined
based on the analytical molecular structural mechanics model developed by the authors. The model is
capable of predicting the mechanical properties (Young’s moduli, Poisson’s ratios and force–strain rela-
tionships) of both defect-free and defective carbon nanotubes under different loading conditions. In par-
ticular our approach is shown to more accurately predict Poisson’s ratio. The numerical prediction of
nonlinear stress–strain relationships for defect-free nanotubes including ultimate strength and strain
to failure of nanotubes is identical to our analytical molecular structural mechanics solution. An interac-
tion based mechanics approach is introduced to model the formation of Stone–Wales (5-7-7-5) topolog-
ical defect. The predicted formation energy is compared with ab initio calculations. The progressive failure
of defective graphene sheets and nanotubes containing a 5-7-7-5 defect is studied, and the degradation of
Young’s moduli, ultimate strength and failure strains of defective nanotubes is predicted.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Carbon nanotubes (CNTs) [1] exhibit exceptional physical prop-
erties: small size, low density, high stiffness, high strength and
excellent electronic and thermal properties [2–7]. These excep-
tional mechanical and physical properties along with low weight
of CNTs and recent improvements in their synthesis and purifica-
tion techniques make CNTs excellent candidates for use in tailoring
properties of composites [8–10].

There is evidence that defects can appear at the stage of CNT
growth and purification [11,12], during device or composite pro-
duction (e.g. chemical functionalizations) [13,14], or under
mechanical strains [15]. Research has indicated that even a small
number of defects in the atomic network will result in some deg-
radation [16,17] of their mechanical properties. Such defects also
act as scattering centers for phonons propagating along the tube
axis, thus reducing intrinsic tube conductivity. The modeling of
mechanical properties of these defective CNTs on a microscopic
and atomistic level represents a great challenge from both theoret-
ical and experimental points of view.

In general, the theoretical approaches based on quantum/
molecular mechanics, including the classical molecular dynamics
(MD) and ab initio methods, give accurate results, but they are
much more computationally expensive and only suitable for small
systems containing limited number of atoms. Some recent devel-
opments based on continuum mechanics have been reported for
estimating elastic properties of nanotubes, such as the representa-
tive continuum truss model [18], the continuum structural
mechanics model [19], and the analytical molecular mechanics
model [20]. These methods only predict elastic constants such as
Young’s moduli and/or Poisson’s ratio of CNTs because the har-
monic energy potential functions were used. In order to model
the mechanical behavior of CNTs up to or beyond bond breaking,
a more complex interatomic potential function is needed. The
Brenner potential function [21] is considered more accurate and
versatile. It can handle changes in atom hybridization and bonds
with atoms other than carbon. A continuum mechanics approach
directly incorporating the Brenner potential function has been
developed by Huang’s group [22,23] to model elastic properties
and stress–strain relationships of carbon nanotubes based on a
modified Cauchy–Born rule. Recently, another simple analytical
molecular structural mechanics model [24] incorporating the mod-
ified Morse potential function [25] has been developed by the
authors to model defect-free CNTs under tensile and torsion load-
ings. By incorporating the modified Morse potential the authors are
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able to predict the entire nonlinear stress–strain relationships
including the ultimate strength and strain to failure of the nano-
tubes. The analytical model has been extended to solve mechanical
responses of single- and multi-walled CNTs under internal and
external pressure loadings [26,27] as well as aligned nanotube-
composites [28]. The analytical model not only provides simple
closed-form solutions but also presents a better insight of the role
of the atomic networks.

Continuum based models have not been well developed for pre-
dicting the effects of defects on mechanical properties of CNTs and
nanotube composites. The quantum mechanics and molecular
dynamics (MD) simulations are still the main tools to look at the ef-
fects of defects on mechanical [4,16,17,25,29–32] and thermal
properties [33,34] of CNTs. One attempt using a continuum based
atomistic model to study defect nucleation in carbon nanotubes un-
der mechanical loadings can be seen in the study by Jiang et al. [35].
Very recently, the effect of defects on fracture of nanotubes has
been studied by Tserpes et al. [36,37] using the Finite Element
(FE) based model where they assumed that the dimensions of the
nanotube structures remain unchanged after the formation of de-
fects, which may not be true in general as atoms redistribute to
minimize energy. In this paper, a finite bond element method for
the mechanical behavior of defective CNTs has been developed.
The developed numerical method is equivalent to the analytical
molecular structural mechanics model [24] for defect-free CNTs.
An interaction based mechanics approach is proposed to determine
the equilibrium geometry configurations of the topological 5-7-7-5
defect [38] in single-walled carbon nanotube and their residual
atomic forces. Then, the stress–strain relationship of defective CNTs
containing a Stone–Wales defect is predicted by using the present
finite bond element method based on the modified Morse potential
function. Progressive failure in the post failure region is investi-
gated and a few computational examples are discussed. The predic-
tions compare favorably to the corresponding published results
from experiments and numerical calculations (i.e. tight binding or
molecular dynamics) for armchair and zigzag carbon nanotubes.

2. An atomistic based finite bond element model

A single-walled carbon nanotube can be viewed as a hollow cyl-
inder rolled from a graphene sheet, composed of carbon hexagons.
The diameter of the nanotube can be calculated as
d ¼

ffiffiffiffi
3a
p

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2

1 þ n2
2 þ n1n2Þ

q
where a = 0.142 nm is the C–C bond

length, and the pair of integers (n1,n2) are indices to represent its
helicity such as armchair (n1 = n2) and zigzag (n2 = 0) nanotubes.

There are several different potential functions available
[21,39,40] for describing C–C bond interaction other than simple
harmonic functions. Among them, the modified Morse potential
function [25] is simple and is used in the present study. The mod-
ified Morse potential function was correlated to the Brenner poten-
tial function for strains below 10%. In this paper, a new term Etorsion

is added to consider the bond energy due to angle variation of bond
twisting D/ which has been found to be negligible for defect-free
tubes [19] and was neglected in earlier studies.[20,24–27] How-
ever, this term may play a more important role in defective tubes.
The energy potential function is given as follow:

E ¼ Estretch þ Eangle þ Etorsion ð1Þ

where Estretch is the bond energy due to bond stretch Dr and Eangle is
the bond energy due to bond angle variation Dh, and

Etorsion ¼
1
2

k/ðD/Þ2 ð2Þ

The parameters associated with the terms Estretch and Eangle can be
seen in Refs. [24,25]. The force constant associated with the term
(2) is taken as [19,41,42] k/ = 0.278 nN nm/rad2.

The stretch force, the angle-variation moment and the torsional
moment can be obtained from differentiations of equation (1) as
functions of bond stretch, bond angle variation and torsion angle
variation, respectively:

FðDrÞ ¼ 2bDeð1� e�bDrÞe�bDr ð3aÞ
MðDhÞ ¼ khjDh½1þ 3ksexticðDhÞ4� ð3bÞ
M/ðD/Þ ¼ k/D/ ð3cÞ

A constant bond torsional stiffness is implied by Eq. (3c). The stretch
stiffness and the angle-variation stiffness can be further obtained
from differentiations of equations (3a) and (3b) as functions of bond
stretch and bond angle variation, respectively:

krðDrÞ ¼ 2bD2
e ð1� 2e�bDrÞe�bDr ð4Þ

khðDhÞ ¼ khjDhb1þ 15ksexticðDhÞ4c ð5Þ

Analytical solutions for predicting nonlinear mechanical behaviors
of defect-free SWCNTs have been investigated by using an effective
‘‘stick-spiral” model based on a unit cell approach [24]. The effective
‘‘stick-spiral” model uses a stick with Eq. (3a) to model the force–
stretch relationship of the C–C bond and a spiral spring with Eq.
(3b) to model the angle bending moment resulting from an angular
variation of bond angle. The stick is assumed to have an infinite
bending stiffness and finite torsional stiffness. One can include
the torsional term by using the stick with Eq. (3c).

For a defective nanotube with loss of local symmetry, the unit
cell approach becomes inappropriate, and a generalized molecular
mechanics (MM) model [43] or a finite element (FE) type model
[19] are needed to include the entire molecular structure system
of the defective nanotube in order to consider the effect of defects
on its mechanical response. In this paper, we propose a new FE
type model for nanotubes based on the effective ‘‘stick-spiral”
model. Bond elements are developed for simulating deformation
modes of the chemical bonds.

Typically the FE type model [19] uses a beam element [44] with
sectional stretch stiffness for the force–stretch relationship of the
C–C bond, sectional flexural rigidity for the angle bending moment
(Eq. (3b)), and sectional torsional stiffness for the torsional moment
(Eq. (3c)). Each element has 12 degrees of freedom. The major dif-
ferences between the FE type model and the effective ‘‘stick-spiral”
model are the assumptions made with respect to the bending stiff-
ness (flexible vs rigid). The bond element used in the present paper
has infinite bending stiffness (the stick) with finite bending stiff-
ness of the two end joints (the spirals) indicated by the square
box shown in Fig. 1. Each of the three molecular deformation modes
(stretching, angle variation, and angle torsion) are represented by
tension, bending and torsion of a bond element with 8 degrees of
freedom ue ¼ ½uxi uyi uzi /i uxj uyj uzj /j �. The element
can be stretched (pure tension) and torqued (pure torsion) along
its axial direction and bent by relative transverse displacement
without angle changes at the two ends. The bond angle variation
of the bond element can be associated with the relative transverse
displacement (e) between the two ends as dh = e/a (Fig. 1c). The
present approach, designated the finite bond element model, is ex-
pected to give the same solution as the ‘‘stick-spiral” model [20,24]
for defect-free CNTs. The stick-spiral model with infinite bending
stiffness [20,24] represents the true physical deformation modes
and is able to predict both in-plane stiffness (Young’ modulus)
and Poisson’s ratio of CNTs accurately.

For the bond element defined in Fig. 1 in a three-dimensional
space, the elemental equilibrium equation can be established for
every bond element. The final system of equations with appropri-
ate boundary conditions imposed can be solved by the displace-
ment-control Newton–Raphson method. A MATLAB program has
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