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a b s t r a c t

A two variable refined plate theory of laminated composite plates is developed in this paper. The theory
accounts for parabolic distribution of the transverse shear strains, and satisfies the zero traction bound-
ary conditions on the surfaces of the plate without using shear correction factor. Equations of motion are
derived from the Hamilton’s principle. The closed-form solutions of antisymmetric cross-ply and angle-
ply laminates are obtained using Navier solution. Numerical results of present theory are compared with
three-dimensional elasticity solutions and results of the first-order and the other higher-order theories
reported in the literature. It can be concluded that the proposed theory is accurate and simple in solving
the static bending and buckling behaviors of laminated composite plates.

Crown Copyright � 2008 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Fiber reinforced composite are widely used in the aerospace,
automotive, marine and other structural applications. In the past
three decades, researches on laminated composite plates have
received great attention, and a variety of laminated theories has
been introduced. The classical laminate plate theory (CLPT), which
neglects the transverse shear effects, provides reasonable results
for thin plates. However, the CLPT underpredicts deflections and
overpredicts frequencies as well as buckling loads with moderately
thick plates. Many shear deformation theories account for trans-
verse shear effects have been developed to overcome the deficien-
cies of the CLPT. The first-order shear deformation theories
(FSDTs) based on Reissner [1] and Mindlin [2] account for the trans-
verse shear effects by the way of linear variation of in-plane dis-
placements through the thickness. Since FSDT violates
equilibrium conditions at the top and bottom faces of the plate,
shear correction factors are required to rectify the unrealistic vari-
ation of the shear strain/stress through the thickness. In order to
overcome the limitations of FSDT, higher-order shear deformation
theories (HSDTs), which involve higher-order terms in Taylor’s
expansions of the displacements in the thickness coordinate, were
developed by Librescu [3], Levinson [4], Bhimaraddi and Stevens
[5], Reddy [6], Ren [7], Kant and Pandya [8], and Mohan et al. [9].
A good review of these theories for the analysis of laminated com-
posite plates is available in Refs. [10–14]. A two variable refined
plate theory (RPT) using only two unknown functions was devel-
oped by Shimpi [15] for isotropic plates, and was extended by
Shimpi and Patel [16,17] for orthotropic plates. The most interest-

ing feature of this theory is that it does not require shear correction
factor, and has strong similarities with the classical plate theory in
some aspects such as governing equation, boundary conditions and
moment expressions.

The purpose of this paper is to develop the RPT for laminated
composite plates. The present theory satisfies equilibrium condi-
tions at the top and bottom faces of the plate without using shear
correction factors. Governing equations are derived from the Ham-
ilton’s principle. Navier solution is used to obtain the closed-form
solutions for simply supported antisymmetric cross-ply and an-
gle-ply laminates. To illustrate the accuracy of the present theory,
the obtained results are compared with three-dimensional elastic-
ity solutions and results of the first-order and the other higher-or-
der theories.

2. Refined plate theory for laminated composite plates

2.1. Basic assumptions

Consider a rectangular plate of total thickness h composed of n
orthotropic layers with the coordinate system as shown in Fig. 1.
Assumptions of the RPT are as follows:

(i) The displacements are small in comparison with the plate
thickness and, therefore, strains involved are infinitesimal.

(ii) The transverse displacement W includes three components
of extension wa, bending wb, and shear ws. These compo-
nents are functions of coordinates x, y, and time t only.

Wðx; y; z; tÞ ¼ waðx; y; tÞ þwbðx; y; tÞ þwsðx; y; tÞ ð1Þ

(iii) The transverse normal stress rz is negligible in comparison
with in-plane stresses rx and ry.
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(iv) The displacements U in x-direction and V in y-direction con-
sist of extension, bending, and shear components.

U ¼ uþ ub þ us; V ¼ vþ vb þ vs ð2Þ

– The bending components ub and vb are assumed to be sim-
ilar to the displacements given by the classical plate theory.
Therefore, the expression for ub and vb can be given as

ub ¼ �z
owb

ox
; vb ¼ �z

owb

oy
ð3aÞ

– The shear components us and vs give rise, in conjunction
with ws, to the parabolic variations of shear strains cxz,
cyz and hence to shear stresses rxz, ryz through the thick-
ness of the plate in such a way that shear stresses rxz, ryz

are zero at the top and bottom faces of the plate. Conse-
quently, the expression for us and vs can be given as
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2.2. Kinematics

Based on the assumptions made in the preceding section, the
displacement field can be obtained using Eqs. (1)–(3) as
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Wðx; y; z; tÞ ¼ waðx; y; tÞ þwbðx; y; tÞ þwsðx; y; tÞ

ð4Þ

The extension component wa of transverse displacement is negligi-
ble small in most cases. It can be neglected for a simpler version of
the present theory named RPT1. The strains associated with the dis-
placements in Eq. (4) are
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2.3. Constitutive equations

Under the assumption that each layer possesses a plane of elas-
tic symmetry parallel to the x–y plane, the constitutive equations
for a layer can be written as
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where Qij are the plane stress-reduced stiffnesses, and are known in
terms of the engineering constants in the material axes of the layer:

Q11 ¼
E1

1� m12m21
; Q 12 ¼

m12E2

1� m12m21
; Q 22 ¼
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;

Q66 ¼ G12; Q 44 ¼ G23; Q 55 ¼ G13 ð8Þ

Since the laminate is made of several orthotropic layers with their
material axes oriented arbitrarily with respect to the laminate coor-
dinates, the constitutive equations of each layer must be trans-
formed to the laminate coordinates (x,y,z). The stress-strain
relations in the laminate coordinates of the kth layer are given as
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where Qijare the transformed material constants given as

Q 11 ¼Q11 cos4 hþ2ðQ 12þ2Q 66Þsin2 hcos2 hþQ 22 sin4 h

Q 12 ¼ ðQ 11þQ 22�4Q 66Þsin2 hcos2 hþQ 12ðsin4 hþ cos4 hÞ
Q 22 ¼Q11 sin4 hþ2ðQ 12þ2Q 66Þsin2 hcos2 hþQ22 cos4 h

Q 16 ¼ ðQ 11�Q 12�2Q 66Þsinhcos3 hþðQ12�Q22þ2Q 66Þsin3 hcosh

Q 26 ¼ ðQ 11�Q 12�2Q 66Þsin3 hcoshþðQ12�Q22þ2Q 66Þsinhcos3 h

Q 66 ¼ ðQ 11þQ 22�2Q 12�2Q 66Þsin2 hcos2 hþQ 66ðsin4 hþ cos4 hÞ
Q 44 ¼Q44 cos2 hþQ 55 sin2 h

Q 45 ¼ ðQ 55�Q 44Þcoshsinh

Q 55 ¼Q55 cos2 hþQ 44 sin2 h

ð10Þ
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Fig. 1. Coordinate system and layer numbering used for a typical laminated plate.

198 S.-E. Kim et al. / Composite Structures 89 (2009) 197–205



Download	English	Version:

https://daneshyari.com/en/article/253460

Download	Persian	Version:

https://daneshyari.com/article/253460

Daneshyari.com

https://daneshyari.com/en/article/253460
https://daneshyari.com/article/253460
https://daneshyari.com/

