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a b s t r a c t

The use of frequency-dependent spectral element matrix (or exact dynamic stiffness matrix) in structural
dynamics is known to provide extremely accurate solutions, while reducing the total number of degrees-
of-freedom to resolve the computational and cost problems. Thus, in this paper, the spectral element
model is developed for an axially loaded bending–shear–torsion coupled composite laminated beam
which is represented by the Timoshenko beam model based on the first-order shear deformation theory.
The high accuracy of the spectral element model is then numerically verified by comparing with exact
theoretical solutions or the solutions obtained by conventional finite element method. For the numerical
verification, the finite element model is also provided for the composite laminated beam.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

It has been well recognized that fiber reinforced composite
materials have many advantages over the isotropic materials due
to their high strength-to-density ratios. Thus they have been
widely used in many industrial applications [1–13]. Typical
examples of industrial application are the composite aircraft wing,
helicopter blade, propeller blade, turbine blade, axles of vehicle,
thin-walled structures and so on. In general, the composite lami-
nated structures are fabricated by bonding two or more laminae
together. It is well known that the composite materials display
anisotropic behavior and thus exhibit coupling between structural
deformations. Thus the dynamic characteristics of a typical com-
posite laminated structure can be enhanced by properly tailoring
the ply orientation and stacking sequence.

Of particular interest especially for the high aspect ratio com-
posite laminated beams (simply, composite beams) is the coupling
between the bending and torsional modes of deformation, which is
usually prevalent in aircraft wings or helicopter blades. As fibrous
composite materials have usually very low shear modulus, the
shear deformation should be also included in the theory of com-
posite beams: this is true especially for the thin-walled composite
structures. For the rotating composite beam structures such as
helicopter blades, the effect of axial loading will be significant.
Thus, this paper considers the dynamics of axially loaded bend-
ing–shear–torsion coupled composite beams, based on the first-
order shear deformation theory (FSDT) which is the equivalent of
the Timoshenko beam theory for composite beams.

Historically there have been many studies on the bending–
torsional vibrations of composite beams. Among many researchers,
Dukumaci [1], Hashemi and Richard [2] and Banerjee [3] have ana-
lyzed the dynamics of composite beams in the framework of the
Bernoulli–Euler beam theory. Banerjee and Williams [4,5] consid-
ered the effects of shear deformation and rotary inertia by adopting
the Timoshenko beam model based on FSDT. However they
neglected the bending–torsional coupling from their Timoshenko
beam model. The effect of bending–torsional coupling was in-
cluded in the Timoshenko beam models by Teoh and Huang [6],
Teh and Huang [7], Weisshaar and Foist [8], Banerjee [9,10], Li
et al. [11] and Mei [12]. In the Timoshenko beam model by Baner-
jee and Williams [5], the elastic axis (the loci of the shear center of
cross-section) was assumed to be deviated from the mass axis (the
loci of the mass center of cross-section). On the other hand, in the
Timoshenko beam models by Teoh and Huang [6], Teh and Huang
[7], Banerjee [9,10], Li et al. [11] and Mei [12], the elastic axis was
assumed to coincide with the mass axis. In this paper, the compos-
ite beams are represented by the Timoshenko beam models which
include the bending–torsional coupling, axial load and damping ef-
fects. The elastic axis of the Timoshenko beam model will be con-
sidered to be deviated from the mass axis.

In the literature, various solution methods have been applied to
the composite beams: analytical approaches [1,6,7,10], symbolic
computing method [3], dynamic stiffness method [2,5,9,11], finite
element method [8], mode superposition method [11], wave-train
closure principle [12], and Rayleigh–Ritz method [13].

In the literature, the fast Fourier transforms (FFT)-based dy-
namic stiffness matrix method is often named spectral element
method (SEM) [14]. Because the exact dynamic stiffness matrix is
formulated from the exact frequency-dependent (dynamic) shape
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functions which satisfy the governing equations of motion, it rep-
resents the dynamic behavior of a structural element exactly. Thus,
the SEM is often justifiably referred to as an exact solution method
in the literature [15,16]. Accordingly, in contrast with the conven-
tional finite element method (FEM), the SEM enables us to repre-
sent a whole uniform structural member as a single element,
regardless of its length, without need to dividing the structural
member into many fine elements in order to improve the solution
accuracy. This will reduce the total number of degrees-of-freedom
(DOFs) used in the dynamic analysis significantly, with lowering
the computation cost. In the literature, Roy Mahapatra and Gopal-
akrishinan [17] and Gopalakrishinan et al. [18] applied the SEM to
the axial–flexural–shear coupled wave propagation in composite
beams.

Motivated from the aforementioned advantages of SEM, this pa-
per presents a spectral element model for the axially loaded bend-
ing–shear–torsion coupled composite Timoskenko beams. The
spectral element model developed for composite beams can be also
applied to the dynamics of bending–shear–torsion coupled beam-
type thin-walled structures. The accuracy of the present spectral
element model is numerically evaluated by comparing the solu-
tions obtained by using the present spectral element model with
those obtained by using the conventional finite element model or
analytical theories.

2. Governing differential equations of motion

The governing differential equations of motion and the associ-
ated boundary conditions for composite beams are derived by
using Hamilton’s principle given byZ t

0
ðdK � dV þ dWÞdt ¼ 0 ð1Þ

where K is the kinetic energy, V is the strain energy, and dW is the
virtual work done by external forces.

Consider a straight composite beam which takes a small ampli-
tude bending–shear–torsion coupled vibration. The composite
beam has the length L, the width b, and the thickness h, as shown
in Fig. 1. The x-axis is chosen to coincide with the elastic axis which
passes through the shear center of the beam cross-section. In Fig. 1,
the coordinates system (1,2,3) represents the material coordinates
for a specific laminate ply, which is rotated about z-axis (or 3-axis)
by an specific ply orientation angle with respect to the inertial ref-
erence coordinates system (x,y,z). The displacements of the beam
in the x-direction, y-direction and z-direction are represented by
u(x,y,z, t), v(x,y,z, t) and w(x,y,z, t), respectively. The elastic axis of
the beam is assumed to take bending deflection wo(x, t) in the z-
direction and torsional rotation /(x, t) about the x-axis. The angle
of rotation of the cross-section about the y-axis due to pure bend-
ing is represented by h(x, t). Accordingly total slope w0o equals the
sum of slopes due to pure bending and shear deformation based
on the FSDT which is the equivalent of the Timoshenko beam the-
ory for composite beams. The displacements of the composite
beam can be assumed in the approximated forms as

wðx; y; z; tÞ ffi woðx; tÞ þ y/ðx; tÞ
uðx; y; z; tÞ ffi �zhðx; tÞ
vðx; y; z; tÞ ffi �z/ðx; tÞ

ð2Þ

Assuming that the chordwise moment and the in-plane axial
displacement are all negligible or zero, the resultant bending mo-
ment M(x, t) and torque T(x, t) can be related to the slope h(x, t)
and twist /(x, t) as follows [8,9]:

M

T

� �
¼

EI CBT

CBT GJ

� �
h0

/0

� �
ð3Þ

where EI, GJ, and CBT are apparent bending rigidity, torsional rigid-
ity, and bending–torsion material coupling rigidity, respectively,
and they are defined by

EI ¼ bðD11 � D2
12D�1

22 Þ
GJ ¼ 4bðD66 � D2

26D�1
22 Þ

CBT ¼ 2bðD16 � D12D26D�1
22 Þ

ð4Þ

where Dij are the bending stiffnesses which are the functions of
composite material properties, laminate ply orientation and stack-
ing sequence [19]. Similarly, the resultant transverse shear force
Q(x, t) can be related to the bending deflection wo(x, t) and slope
h(x, t) as

Qðx; tÞ ffi jGAðw0o � hÞ ð5Þ

where jGA is the apparent shear rigidity defined by

jGA ¼ bA55 ð6Þ

where A55 is the extensional stiffness [19] and j is the shear correc-
tion factor for the cross-section of the composite beam.

Assume that the composite beam is subjected to the forces Q1(t)
and Q2(t), the moments M1(t) and M2(t), and the torques T1(t) and
T2(t) applied at the boundaries x = 0 and x = L as shown in Fig. 2, the
distributed dynamic loads fw(x, t), fh(x, t) and f/(x, t), and a constant
axial tensile force P which acts in the x-direction through the mass
center of cross-section. By using the kinematic relations of Eq. (2)
and the force–displacement relationships of Eqs. (3) and (5), the
strain energy V, kinetic energy K, and the virtual work dW done
by external forces can be obtained as follows:

V ¼ 1
2

Z L

0
fMh0 þ T/0 þ Qðw0o � hÞgdxþ 1

2

Z L

0

Z
A

Pw02 dAdx

¼ 1
2

Z L

0
fEIh02 þ 2CBT/

0h0 þ GJ/02 þ jGAðw0o � hÞ2 þ Pðw02o

þ 2yCAw0o/
0 þ r2

g/
02Þgdx

K ¼ 1
2

Z L

0

Z
A
qð _w2 þ _u2 þ _v2ÞdAdx

¼ 1
2

Z L

0
ðqA _w2

o þ 2qAyCM _wo
_/þ qI _h2 þ qJ _/2Þdx ð7Þ

dW ¼ Q 1dwoð0Þ þ Q2dwoðLÞ þM1dhð0Þ þM2dhðLÞ þ T1d/ð0Þ

þ T2d/ðLÞ þ
Z L

0
ffwðx; tÞdwo þ fhðx; tÞdhþ f/ðx; tÞd/

� c1 _wodwo � c2
_hdh� c3

_/d/gdx
z,3 y
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Fig. 1. The geometry and coordinates for a composite beam.
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Fig. 2. Boundary forces for a composite beam.

U. Lee, I. Jang / Composite Structures 92 (2010) 2860–2870 2861



Download English Version:

https://daneshyari.com/en/article/253506

Download Persian Version:

https://daneshyari.com/article/253506

Daneshyari.com

https://daneshyari.com/en/article/253506
https://daneshyari.com/article/253506
https://daneshyari.com

