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ABSTRACT

In the present article, axisymmetric bending and buckling of perfect functionally graded solid circular
plates are studied based on the unconstrained third-order shear deformation plate theory (UTST). The
UTST releases the shear-free condition on the top and bottom surfaces of plate which can be particularly
useful when the plate is subjected to contact friction or presented in a flow field where the boundary
layer shear stress is substantial. The solutions for deflections, force and moment resultants and critical
buckling loads in bending and bucking analysis of functionally graded circular plates using UTST are pre-
sented in terms of the corresponding quantities of the homogeneous plates based on the classical plate
theory (CPT). It is assumed that the non-homogeneous mechanical properties of plate, graded through
the thickness, are described by a power function of the thickness coordinate. Resulting equations are
employed to obtain the closed-form solutions. Numerical results for the maximum displacement and
critical buckling load are presented for various percentages of ceramic-metal volume fractions and have

been compared with those obtained using first- and third-order shear deformation plate theories.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) have gained much atten-
tion as advanced structural materials in recent years because of
their heat-resistance properties. FGMs were first introduced in
1984 by a group of material scientists in Japan for developing ther-
mal barrier materials [1,2]. In an FGM, the composition and struc-
ture gradually vary over volume, resulting in corresponding
changes in the properties of the material. FGMs are made by com-
bining two or more materials using powder metallurgy method.
Typically these materials are made from a mixture of ceramic
and metal in which the ceramic component provides high-temper-
ature resistance due to its low thermal conductivity; on the other
hand, the ductile metal component prevents fracture caused by
thermal stresses. Functionally graded materials are now consid-
ered as a potential structural material for high-speed spacecraft.
Several studies have been performed to analyze the behavior of
functionally graded plates. Elastic bifurcation buckling of function-
ally graded plates under in-plane compressive loading was studied
by Feldman and Aboudi [3], based on a combination of microme-
chanical and structural approaches. Javaheri and Eslami [4,5]
reported mechanical and thermal buckling of rectangular function-
ally graded plates based on the classical Kirchhoff plate theory.
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Motivated by Javaheri, Lanhe [6] used Navier solution to study
thermal buckling of a simply supported moderately thick rectangu-
lar FGM plate based on the first-order shear deformation plate the-
ory (FST), and presented the results in closed-form solutions. Ng
et al. [7] presented a formulation for the parametric response of
functionally graded cylindrical shells under harmonic axial load-
ing. They used Bolton’s first approximation and considered the
effects of the volume fraction of the material constituents and their
distribution on the dynamic stability. By using an asymptotic
method, Reddy and Cheng [8] studied three-dimensional thermo-
mechanical deformations of simply supported, functionally rectan-
gular plates. They computed temperature, displacements, and
stresses of the plate for different volume fractions of the ceramic
and metallic constituents. Praveen and Reddy [9] investigated the
static and dynamic responses of functionally graded ceramic-metal
plates by using a plate finite element that accounts for the trans-
verse shear strains. Loy et al. [10] presented a study on the vibra-
tion of cylindrical shells made of FGM composed of stainless steel
and nickel. They considered the influence of constituent volume
fractions and the effects of configurations of the constituent mate-
rials on the frequencies. Using the first-order shear deformation
plate theory of Mindlin, Reddy et al. [11] studied axisymmetric
bending and stretching of functionally graded solid circular and
annular plates. They presented the solutions for deflections, force
and moment resultants based on the first-order plate theory in
terms of those obtained using the classical plate theory. As an
extensive work, Ma and Wang [12] employed TST to solve the
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bending and buckling problems of functionally graded materials.
They derived the relationships between the solutions of axisym-
metric bending and buckling of FGMs based on TST and those of
homogeneous plates based on the classical Kirchhoff plate theory.
Also, using shooting method, they considered the axisymmetric
large deflection bending and thermal post-buckling behavior of
functionally graded circular plates, under mechanical and thermal
loadings based on the classical nonlinear von Karman plate theory
[13]. Using the exact element method, Efraim and Eisenberger [14]
analyzed the vibration of variable thickness thick annular homoge-
neous and FGM plates based on the first-order shear deformation
theory. In the present work, unconstrained third-order shear defor-
mation theory is employed to analyze the axisymmetric bending
and buckling problems of functionally graded circular plates in
which the bending-stretching coupling exists. Using an analytical
method, the solutions for maximum displacements and critical
buckling loads of functionally graded plates was derived based
on the unconstrained-order shear deformation plate theory. The
solutions have been derived in terms of the responses of homoge-
neous circular plates based on the classical plate theory. The effects
of the material distribution through the thickness and shear defor-
mation on the axisymmetric bending and buckling of the function-
ally graded plates have been considered.

2. Material properties

Consider a solid FGM circular thick flat plate of radius b and
thickness h referred to the polar coordinate (r, 0, z). The materials
in top and bottom surfaces of the plate are metal and ceramic,
respectively. The material properties P of FGMs are a function of
the material properties and volume fractions of the all constituent
materials which can be expressed for k different constituents as

k
P=> PV, (1)
i=1

where P; and V; are respectively, the material property and volume
fraction of the ith constituent material. The sum of volume fractions
of the all constituent materials must be unity as follow [10]

k
Vi=1, (2)
i=1

1

It is assumed that the material composition in an FGM plate varies
continuously along the thickness direction only, in terms of volume
fractions according to a power law distribution as
N
Vm(z) = (%) )
where subscript m refers to the metal component; and N denotes
the power law index which takes values greater than or equal to
zero. The value of N equal to zero represents the fully ceramic plate.
For a FGM with two constituent materials, the volume fraction
of ceramic component can be obtained in view of the Egs. (2) and
(3) as follow

ve-1-(" ;hZZ)N, (4)

where subscript c refers to the ceramic component.
Using Egs. (1), (3) and (4), the Young’s modulus E and Poisson
ratio v can be written as

E— (Em—Eo) (h ;hzz>” +E, (5a)

V= (Vm — Ve (h ;hZZ)N + Ve (5b)

(3)

Generally Poisson’s ratio v varies in a small range, for simplicity it is
assumed to be a constant.

3. Formulation of the problem
3.1. Equilibrium equations based on UTST

The unconstrained third-order shear deformation theory is
based on the following representation of the displacement field
across the plate thickness [15]

Ui(r,2) = u(r) + 2@, (1) + 22 @, (1), (6a)
Uz(rv Z) = W(r)7 (Gb)

where U; and U, are the displacements along the radius and thick-
ness, respectively; u is the stretching function; ¢, is the rotation
function; ¢, is the higher-order rotation function; and w is the
transverse deflection. The linear strain components associated with
the displacement field (6) are

_oUy _du _deo,  _;doe,
=TT e T ar (73)
U _u ¢, 59,
i S5 B ) 7
€00 r r+z r +z T (7b)
ou, U, dw )
Vrz*a—z“‘?*q)ﬁ‘a“"i‘z P,- (70)
The Hooke’s law for a plate is defined as
Oy = E v 8a
= 177‘)2 (Srr + 500)7 ( )
E
Ogg = 1-2 (S(-)(-) + VSH-)7 (Sb)
E
Org = 72(1 ) &r- (8¢)

Using the principle of virtual displacements, the equilibrium equa-
tions can be obtained as [16]

. d

ou: a(rNrr) — Ny = 07 (ga)
d

001+ (M) =My —1Q: =0, (9b)
d

0, : ar (rPiy) — Pgo — 31R; = 0, (90)

. d

ow a(rQ,) +rq=0. (9d)

where § represents the variational symbol; N;, M;, P;, (i = rr, 00) are
the forces, moments, and higher-order moments, respectively;
and Q,, R; are respectively, shear force and higher-order shear force
which are all defined by the following expressions

-h/2
(NrnMrnPrr) = / O'rr(l,Z,Zg)dZ, (103)
J—h/2
hy/2
(Nog, Mg, Pgg) = /h 0'00(172-,23)dz7 (10b)
- /2
hy/2
(Q:,Ry) :/ 6.-2(1.,22)dz. (10c)
—h/2

Using Egs. (7), (8), and (10), one can obtain the constitutive rela-
tions as

Nir = A1 Au + Bi1A@, + E11A¢,, (11a)
Ny = A1Vu + B Vo, + Ei1Vo,, (11b)
M = Biy At + DA, + FiyAg,, (12a)
Mo = B11Vu + D11V, + F11VQ,, (12b)
Py = Ej1Au+ Fi1 4@, + Hi1 A@,, (13a)
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