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a b s t r a c t

A mixed method is presented to study the dynamic behavior of functionally graded (FG) beams subjected
to moving loads. The theoretical formulations are based on Euler–Bernoulli beam theory, and the govern-
ing equations of motion of the system are derived using the Lagrange equations. The Rayleigh–Ritz
method is employed to discretize the spatial partial derivatives and a step-by-step differential quadrature
method (DQM) is used for the discretization of temporal derivatives. It is shown that the proposed mixed
method is very efficient and reliable. Also, compared to the single-step methods such as the Newmark
and Wilson methods, the DQM gives better accuracy using larger time step sizes for the cases considered.
Moreover, effects of material properties of the FG beam and inertia of the moving load on the dynamic
behavior of the system are investigated and analyzed.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The study of behavior of functionally graded materials (FGMs)
has been an interesting topic of considerable focus during the past
decades. The intensity and rapid growth of research into this class
of materials is actually due to their continuously varying material
properties, which gives great advantages over the conventional
homogeneous and layered materials. For example, FGMs consisting
of metallic and ceramic components used in dynamic systems can
improve both the mechanical and thermo-mechanical perfor-
mances of the system. On the other hand, the cracking and delam-
ination phenomenon which are often observed in conventional
multi-layered systems are avoided due to the smooth transition be-
tween the properties of the components in FGMs [1–3]. Therefore, it
is of great importance to analyze the behavior of FG structures.

Due to the above-mentioned favorable features, many studies
have been conducted on the static and dynamic behavior of FG
structures. The elasticity solutions of transversely and thermally
loaded FG beams and also sandwich beams with FG cores were ob-
tained by Sankar and his co-workers [4–6]. In their studies, the
thermo mechanical properties of FGM were all assumed to vary
exponentially through the thickness of the beam. Zhu and Sankar
[7] solved the two-dimensional elasticity equations for the FG beam

subjected to transverse loads using a mixed Fourier series – Galer-
kin method. Shi and Chen [8] studied the problem of a functionally
graded piezoelectric cantilever beam subjected to different load-
ings. A pair of stress and induction functions was proposed in the
form of polynomials and a set of analytical solutions for the beam
subjected to different loadings was obtained. Nirmala et al. [9] de-
rived analytical solutions for the thermo-elastic stresses in a three-
layer composite beam with a middle FG layer. Using the meshless
local Petrov–Galerkin method, Ching and Yen [10] presented
numerical solutions for two-dimensional FG solids such as circular
cylinders and simply supported beams subjected to either mechan-
ical or thermal loads. Later, they used the meshless technique to ob-
tain the transient thermo-elastic responses of FG beams under a
non-uniform connective heat supply [11]. The free vibration of
orthotropic FG beams with various end conditions was studied by
Lu and Chen [12]. Wu et al. [13] obtained the closed-form natural
frequencies of a simply supported FG beam with mass density
and Young’s modulus being polynomial functions of the axial coor-
dinate. Aydogdu and Taskin [14] and Yang and Chen [15] analyzed
the free vibration of FG beams. Kapuria et al. [16] presented a finite
element model for static and free vibration responses of layered FG
beams using a third-order theory and its experimental validation. A
plane elasticity solution for a cantilever FG beam subjected to dif-
ferent static loads by means of the semi-inverse method was de-
rived by Zhong and Yu [17]. Two-dimensional elasticity solutions
for bending and free vibration of FG beams resting on Winkler–Pas-
ternak elastic foundation were obtained by Ying et al. [18]. Li [19]
proposed a new unified approach to investigate the static and free
vibration behavior of Euler–Bernoulli and Timoshenko beams.
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Based on the high-order sandwich panel theory, Rahmani et al. [20]
developed a new model for free vibration analysis of sandwich
beams with syntactic foam as a FG flexible core.

From the review of the literature, it is found that most of the
researchers are interested in the free vibration analysis of FG struc-
tures, but few of them have paid attention to the forced vibration
analysis of FG structures. On the other hand, to the authors’ best
knowledge, the information regarding the forced vibration re-
sponses of FG structures due to the moving loads is rare and this
is the reason why this paper aims its study.

In the literature, one may refer to the work done by Yang et al.
[21] or the recent study by S�ims�ek and Kocatürk [22]. In Ref. [21],
the free and forced vibrations of cracked FG beams subjected to an
axial force and a moving load were studied by using the modal
technique. In the recent paper [22], the free and forced vibrations
of a simply supported FG beam subjected to a concentrated moving
harmonic load were analyzed. The transverse and axial displace-
ments of the simply supported beam were first approximated by
series of polynomial functions and by using the Lagrange equations
the governing equations of motion of the FG beam were obtained
in matrix form. The Newmark time integration scheme was then
employed to solve the resulting dynamic equations. In both the pa-
pers [21,22], the effect of inertia of the moving load was ignored
and the moving load was modeled as a simple moving force model
(a force with constant [21] or harmonic magnitude [22] which
moved along the FG beam). Besides, in Ref. [21] the material prop-
erties of the beam were only assumed to vary exponentially in the
beam thickness direction and also the results of Ref. [22] were only
given for simply supported FG beams.

The differential quadrature method (DQM), which was first
introduced by Bellman et al. [23,24] in the early 1970s, is an alter-
native numerical solution technique for initial and/or boundary
problems in engineering and mathematics. Its central idea is to
approximate the derivative of a function at a discrete point with
respect to a coordinate direction using a linear sum of all the func-
tion values at all discrete points along that direction [25,26]. Com-
pared to the low-order methods, such as the finite element and
finite difference methods, the DQ method can generate numerical
results with high-order of accuracy by using a considerably smaller
number of discrete points and therefore requiring relatively little
computational effort. Another particular advantage of the DQ
method lies in its ease of use and implementation.

The DQ method was initially proposed for the solution of initial-
value problems [23], but little attention has been paid on this issue
until recent years. Using the Hermite interpolation functions as the
trial functions, Wu and Liu [27,28] proposed a generalized differen-

tial quadrature rule to solve linear and nonlinear initial-value
problems. Shu and Yao [29] proposed a block Marching technique
with DQ discretization for the solution of time-dependent prob-
lems. The time span was first divided into several blocks and the
quadrature rule was then applied in each of the blocks. This tech-
nique reduces considerably the computational cost, since a smaller
system of algebraic equations should be solved at each block
(step). Tanaka and Chen [30,31] proposed a combined application
of dual reciprocity boundary element method (DRBEM) and DQ
method to transient diffusion and elastodynamic problems. In a
series of papers on the solution of initial-value problems using
the DQ method, Fung [32–34] introduced a modified DQ method
to incorporate initial conditions. He also discussed in details, the
stability property of the DQ method. It was emphasized that the
accuracy and stability of the DQ method are dictated by the choice
of sampling time points and also by the ways in which the initial
conditions are incorporated into the solution process. He also
showed that unconditionally stable algorithms using the DQ meth-
od can be obtained, if the initial conditions are incorporated by
modifying the weighting coefficient matrices and if the number
of sampling time points is small. Based on the construction of cubic
cardinal spline functions, Zhong and Lan [35] developed a DQ time
integration scheme and applied it to the solution of dynamic sys-
tems governed by Duffing-type nonlinear differential equations.
Eftekhari et al. [36–40] proposed a coupled finite element – differ-
ential quadrature method for the solution of moving load class of
problem. It has been claimed that the proposed mixed method is
very efficient for the solution of time-dependent problems. Liu
and Wang [41] presented an assessment of the DQ time integration
scheme for nonlinear dynamic equations. It was shown that the DQ
time integration scheme is reliable, computationally efficient and
also suitable for time integrations over long time duration. But care
should be taken in choosing a time step when applying the DQ
method to nonlinear systems. In a series of papers, Civalek pro-
posed a number of mixed methodologies for the nonlinear dy-
namic analysis of rectangular plates and multi-degree-of-freedom
(MDOF) systems [42–44].

In this study a new mixed method, which combines the Ray-
leigh–Ritz method and the differential quadrature method
(DQM), is proposed for forced vibration analysis of FG beams sub-
jected to moving loads. The governing equations of motion of the
FG beam are derived by using the Lagrange equations under the
assumption of the Euler–Bernoulli beam theory. The Rayleigh–Ritz
method is first employed to discretize the spatial partial deriva-
tives, and the DQM is then applied to analogize the temporal deriv-
atives. The resulting system of algebraic equations can be easily

Nomenclature

m number of sampling time points per DQM time element
nT number of DQM time elements
Aij elements of first-order DQM weighting coefficient ma-

trix
Bij elements of second-order DQM weighting coefficient

matrix
Et modulus of elasticity (Young’s modulus) at the top sur-

face of the FG beam
Eb modulus of elasticity (Young’s modulus) at the bottom

surface of the FG beam
Eratio ratio of Young’s modulus at the top and bottom surfaces

of the FG beam (=Et/Eb)
qt density at the top surface of the beam
qb density at the bottom surface of the beam
qratio ratio of density at the top and bottom surfaces of the FG

beam (=qt/qb)

x horizontal coordinate
z vertical coordinate
t time
k power-law exponent
u axial displacement of the beam
w vertical displacement of the beam
/(x), w(x) Rayleigh–Ritz trial/test functions
M mass of the moving load
v velocity of the moving point load
g gravitational acceleration
[m*], [c*], [k*] instantaneous mass, damping, and stiffness matri-

ces due to the inertia of the moving load
[M], [C], [K] structural mass, damping, and stiffness matrices
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