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a b s t r a c t

A nonlinear bending analysis is presented for a simply supported, functionally graded plate resting on an
elastic foundation of Pasternak-type. The plate is exposed to elevated temperature and is subjected to a
transverse uniform or sinusoidal load combined with initial compressive edge loads. Material properties
are assumed to be temperature-dependent, and graded in the thickness direction according to a simple
power-law distribution in terms of the volume fractions of the constituents. The formulations are based
on a higher-order shear deformation plate theory and general von Kármán-type equation that includes
the plate-foundation interaction and thermal effects. A two step perturbation technique is employed
to determine the load–deflection and load–bending moment curves. The numerical illustrations concern
nonlinear bending response of functional graded plates with two constituent materials resting on Paster-
nak elastic foundations from which results for Winkler elastic foundations are obtained as a limiting case.
The results reveal that the characteristics of nonlinear bending are significantly influenced by foundation
stiffness, temperature rise, transverse shear deformation, the character of in-plane boundary conditions
and the amount of initial compressive load. In contrast, the effect of volume fraction index N becomes
weaker when the plate is supported by an elastic foundation.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The demand for improved structural efficiency in aerospace
structures has resulted a new class of materials, called functionally
graded materials (FGMs). Typically, FGMs are made from a mixture
of metals and ceramics and are further characterized by a smooth
and continuous change of the mechanical properties from one sur-
face to another. The ceramic constituents of FGMs are able to with-
stand high temperature environments due to their better thermal
resistance characteristics, while the metal constituents provide
stronger mechanical performance and reduce the possibility of cat-
astrophic fracture. FGMs are now developed for an increased use as
face sheets of sandwich structures, and in such a case the face
sheet may be modeled as an FGM plate resting on an elastic foun-
dation. Consequently, investigations on vibration characteristics of
FGM plates resting on elastic foundations are identified as an inter-
esting field of study in recent years [1–3].

Many studies for large deflection and/or nonlinear bending of
FGM plates are available in the literature, see, for example, [4–
11]. However, investigations in nonlinear bending analysis of
FGM plates resting on an elastic foundation are limited in number.

Among those, Praveen and Reddy [4] analyzed nonlinear static and
dynamic response of FGM plates subjected to transverse mechan-
ical loads and a 1-D steady heat conduction by using finite element
method. Shen [5,6] presented a nonlinear bending analysis of sim-
ply supported shear deformable FGM rectangular plates subjected
to a transverse uniform and sinusoidal load in thermal environ-
ments or heat conduction. Yang and Shen [7] developed a semi-
analytical–numerical method to examine the large deflection of
shear deformable FGM rectangular plates subjected to combined
mechanical and thermal loads under various boundary conditions.
In their studies [5–7] heat conduction and/or temperature-depen-
dent material properties were taken into account. Na and Kim [8]
studied nonlinear bending of clamped FGM rectangular plates sub-
jected to a transverse uniform pressure and thermal loads by using
a 3-D finite element method. Ghannadpour and coworkers [9,10]
studied large deflection of simply supported thin FGM plates sub-
jected to a uniform transverse pressure based on the classical plate
theory. Khabbaz et al. [11] studied nonlinear bending of simply
supported FGM plates subjected to a uniform transverse pressure
based on the first- and higher-order shear deformation plate theo-
ries. In their studies [9–11], however, the material properties were
assumed to be independent of temperature. On the other hand,
Yang and Shen [12] presented a large deflection analysis of thin
FGM plates resting on a Pasternak elastic foundation subjected to
combined transverse and in-plane loads, but the numerical results
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were only for a simple case of an FGM plate in a fixed thermal
environment.

The present paper extends the previous works [5] to the case of
FGM plates resting on a Pasternak elastic foundation. The plate is
exposed to elevated temperature and is subjected to a transverse
uniform or sinusoidal load combined with initial compressive edge
loads. The material properties are assumed to be temperature-
dependent, and graded in thickness direction according to a vol-
ume fraction power-law distribution. The formulations are based
on a higher-order shear deformation plate theory and general
von Kármán-type equation that includes the plate-foundation
interaction and thermal effects. A two step perturbation technique
is employed to determine the load–deflection and load–bending
moment curves. The numerical illustrations show the nonlinear
bending response of FGM plates resting on elastic foundations un-
der different sets of loading conditions.

2. Theoretical development

Here we consider an FGM plate of length a, width b and thick-
ness h, which rests on an elastic foundation. As usual, the reference
coordinate system has its origin at the corner of the plate on the
middle plane, as shown in Fig. 1. The plate is made from a mixture
of ceramics and metals, the mixing ratio of which is varied contin-
uously and smoothly in the Z direction. This is achieved by using a
simple rule of mixture of composite materials. We assume that the
composition is varied from the top to the bottom surface, i.e. the
top surface (Z = �h/2) of the plate is ceramic-rich whereas the bot-
tom surface (Z = h/2) is metal-rich. In such a way, the effective
material properties Pf , like Young’s modulus E or thermal expan-
sion coefficient a, can be expressed as

Pf ¼ PcVc þ PmVm ð1Þ

in which Pc and Pm denote the temperature-dependent properties of
the top and bottom surfaces of the plate, respectively, and Vc and
Vm are the ceramic and metal volume fractions and are related by

Vc þ Vm ¼ 1 ð2Þ

and we assume the volume fraction Vm follows a simple power law
as

Vm ¼
2Z þ h

2h

� �N

ð3Þ

where the volume fraction index Nð0 6 N 6/Þ dictates the material
variation profile through the plate thickness and may be varied to
obtain the optimum distribution of component materials.

Since functionally graded structures are most commonly used
in high temperature environment where significant changes in
mechanical properties of the constituent materials are to be ex-
pected [13], it is essential to take into consideration this tempera-
ture-dependency for the accurate prediction of the mechanical
responses. Thus, the effective Young’s modulus E, and thermal
expansion coefficient a are assumed to be functions of tempera-

ture, so that E and a are both temperature and position dependent.
The Poisson’s ratio mf depends weakly on temperature change and
is assumed to be a constant. From Eqs. (1)–(3), one has

E ¼ ðEm � EcÞ
2Z þ h

2h

� �N

þ Ec; a ¼ ðam � acÞ
2Z þ h

2h

� �N

þ ac ð4Þ

It is evident that when Z ¼ �h=2; E ¼ Ec and a ¼ ac , and when
Z ¼ h=2; E ¼ Em and a ¼ am.

The plate is exposed to elevated temperature and is subjected to
a transverse uniform load q ¼ q0 or a sinusoidal load q ¼ q0 sin(pX/
a)sin(pY/b) combined with initial compressive edge loads. Let U;V
and W be the plate displacements parallel to a right-hand set of
axes (X,Y,Z), where X is longitudinal and Z is perpendicular to
the plate. Wx and Wy are the mid-plane rotations of the normals
about the Y- and X-axes, respectively. As is commonly done, the
foundation is assumed to be an attached foundation, meaning no
part of the plate lifts off the foundation in the deformed region.
The load–displacement relationship of the foundation is assumed
to be p ¼ K1W � K2r2W , where p is the force per unit area, K1 is
the Winkler foundation stiffness and K2 is a constant showing
the effect of the shear interactions of the vertical elements, and
r2 is the Laplace operator in X and Y. Let F(X,Y) be the stress func-
tion for the stress resultants defined by Nx ¼ F;YY ;Ny ¼ F;XX and
Nxy ¼ �F;XY , where a comma denotes partial differentiation with
respect to the corresponding coordinates.

Reddy [14] developed a simple higher-order shear deformation
plate theory. This theory assumes that the transverse shear strains
are parabolically distributed across the plate thickness. The advan-
tages of this theory over the first order shear deformation theory
are that the number of independent unknowns (U;V ;W;Wx and
WyÞ is the same as in the first order shear deformation theory,
and no shear correction factors are required. Based on Reddy’s
higher-order shear deformation plate theory and including the
plate-foundation interaction and thermal effects, the governing
differential equations for an FGM plate undergoing moderately
large rotations in the von Kármán sense can be derived as

eL11ðWÞ � eL12ðWxÞ � eL13ðWyÞ þ eL14ðFÞ � eL15ðNTÞ
� eL16ð �MTÞ þ K1W � K2r2W ¼ eLðW; FÞ þ q ð5Þ

eL21ðFÞ þ eL22ðWxÞ þ eL23ðWyÞ � eL24ðWÞ � eL25ðNTÞ ¼ �1
2
eLðW;WÞ ð6ÞeL31ðWÞ þ eL32ðWxÞ � eL33ðWyÞ þ eL34ðFÞ � eL35ðNTÞ � eL36ðSTÞ ¼ 0 ð7ÞeL41ðWÞ � eL42ðWxÞ þ eL43ðWyÞ þ eL44ðFÞ � eL45ðNTÞ � eL46ðSTÞ ¼ 0 ð8Þ

Note that the geometric nonlinearity in the von Kármán sense is
given in terms of eL( ) in Eqs. (5) and (6), and the other linear oper-
ators eLij( ) are defined as in [5].

In the above equations, NT ;MT ; ST and PT are the forces, mo-
ments and higher order moments caused by the elevated temper-
ature, and are defined by
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where DT is temperature rise from some reference temperature at
which there are no thermal strains, andFig. 1. An FGM rectangular plate resting on a Pasternak elastic foundation.
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