

European Journal of Pharmacology 565 (2007) 207-211

www.elsevier.com/locate/ejphar

Short communication

Role of cannabinoid CB₂ receptors in glucose homeostasis in rats

Francisco Javier Bermudez-Silva ^{a,*}, Irene Sanchez-Vera ^a, Juan Suárez ^a, Antonia Serrano ^a, Esther Fuentes ^b, Pablo Juan-Pico ^b, Angel Nadal ^b, Fernando Rodríguez de Fonseca ^{a,*}

^a Fundación IMABIS, Hospital Carlos Haya, Málaga 29010, Spain ^b Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain

Received 19 August 2006; received in revised form 12 February 2007; accepted 13 February 2007 Available online 20 April 2007

Abstract

Here we show that the activation of cannabinoid CB_2 receptors improved glucose tolerance after a glucose load. Blockade of cannabinoid CB_2 receptors counteracted this effect, leading to glucose intolerance. Since blockade of cannabinoid CB_1 receptors mimics the actions of cannabinoid CB_2 receptor agonists, we propose that the endocannabinoid system modulates glucose homeostasis through the coordinated actions of cannabinoid CB_1 and CB_2 receptors. We also describe the presence of both cannabinoid CB_1 and CB_2 receptor immunoreactivity in rat pancreatic β - and non- β -cells, adding the endocrine pancreas to adipose tissue and the liver as potential sites for endocannabinoid regulation of glucose homeostasis.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Endocannabinoid; Cannabinoid receptor; Glucose intolerance; Diabetes; Pancreatic islet

1. Introduction

Endocannabinoids are lipid mediators that counteract satiety signals at the gastrointestinal and hypothalamic levels, promoting overfeeding and lipid biosynthesis and storage (Cota et al., 2003; Gomez et al., 2002). A role for cannabinoid CB₁ receptors has been established for these actions (Di Marzo and Matias, 2005). As confirmation, a clinical trial involving obese patients treated with Rimonabant, a cannabinoid CB₁ receptor antagonist, resulted in a relevant reduction in body weight, waist circumference and insulin resistance (Van Gaal et al., 2005). Recent reports have established that in rats cannabinoid CB₁ receptors modulate glucose homeostasis after a glucose load (Bermudez-Silva et al., 2006), and that glucose levels modulate anandamide and 2-arachidonoyl glycerol production by the pancreatic beta-cell line RIN-m5F (Matias

et al., 2006). Additionally, a recent report suggest that there is overactivation of the endocannabinoid system in obese humans and in humans with eating disorders (Engeli et al., 2005; Monteleone et al., 2005). The effects of natural and endogenous cannabinoids on lipid and glucose metabolism might be mediated by cannabinoid CB₁ receptors located in insulinsensitive tissues such as adipose tissue (Cota et al., 2003) and the liver (Osei-Hyiaman et al., 2005). The endocrine pancreas is an additional potential target for exogenously administered cannabinoids since there are cannabinoid CB₁ receptors in pancreatic islets (Juan-Pico et al., 2006) and in rat insulinoma βcell line RIN-m5F (Matias et al., 2006). Besides cannabinoid CB₁ receptors, we have described that cannabinoid CB₂ receptors modulate calcium oscillations and insulin secretion in mouse pancreatic islets in vitro (Juan-Pico et al., 2006). However, we do not know whether cannabinoid CB₂ receptors modulate glucose homeostasis in vivo, a question addressed in this study. To this end we analyzed whether cannabinoid CB₂ receptor-acting drugs modulate glucose homeostasis in rats receiving an i.p. glucose load. We compared these actions with those described for cannabinoid CB₁ receptor antagonists and analyzed the presence of cannabinoid CB₁ and CB₂ receptors in rat pancreatic islets.

^{*} Corresponding authors. Fundación IMABIS, Avenida Carlos Haya s/n, 7ª Planta, Pabellón A, 29010, Málaga, Spain. Tel.: +34 669426548; fax: +34 951291447.

E-mail addresses: franciscoj.bermudez.exts@juntadeandalucia.es (F.J. Bermudez-Silva), fernando.rodriguez@fundacionimabis.org (F. Rodríguez de Fonseca).

2. Materials and methods

2.1. Animals

We carried out the experiments with male Wistar rats (250 g), in strict compliance with the European Communities directive 86/609/EEC regulating animal research. Animals were housed in groups of four in a room with controlled temperature (20 \pm 2 °C) and humidity (55 \pm 5%) with free access to water and standard food pellets. Food was withdrawn in the early morning (4 h before the procedure of glucose tolerance test).

2.2. Glucose tolerance test

This was carried out by injecting an intraperitoneal glucose load of 2 g/kg body wt. Tail blood samples were collected before (0 min) and 5, 10, 15, 30, 60 and 120 min after glucose

administration. Glucose was determined using a standard glucose oxidase method as described previously (Bermudez-Silva et al., 2006).

2.3. Drugs and treatments

Awake rats (n=8 per group) were injected i.p. with either vehicle (5% Tween 80 in saline), the mixed cannabinoid CB₁/CB₂ receptor agonists 2-arachidonoylglycerol (2-AG, 4 mg/kg) and (R)-(+)-(2,3-dihydro-5-methyl-3-[(morphoninyl)-methyl]-pyrrolo-[1,2,3-de]-1,4-benzoxazinyl)-(1-napthalenyl) methanone mesylate (WIN 33,212-2, 5 mg/kg), the cannabinoid CB₂ receptor agonist 3-(1',1'-dimethylbutyl)-1-deoxy-delta8-THC, JWH 133 (0.1; 1 and 2 μ g/kg, Huffman et al., 1999), the selective cannabinoid CB₂ receptor antagonist 6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-yl](4-methoxyphemyl) methanone (AM630, 0.001, 0.01 and 0.05 mg/kg, Ross et al.,

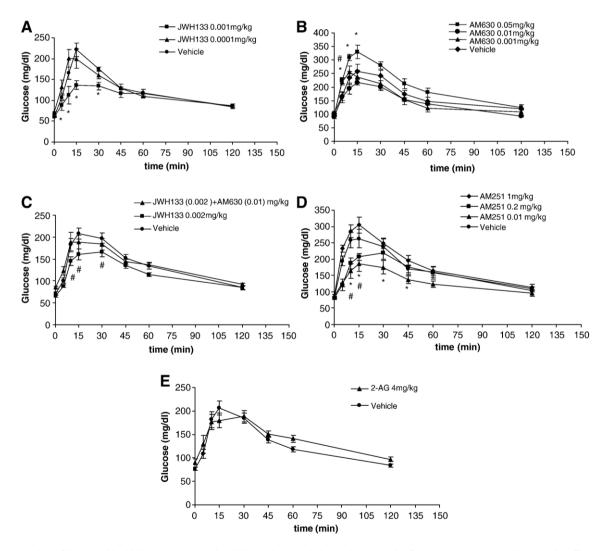


Fig. 1. Administration of the cannabinoid CB_2 receptor agonist JWH 133 improved glucose homeostasis after a glucose load (A). The opposite effect was observed when a cannabinoid CB_2 receptor antagonist, AM630, was administered before glucose (B). Pretreatment with AM630 antagonized the effects of JWH 133, confirming the role of cannabinoid CB_2 receptors on the effects of JWH 133 (C). The effects of administration of a cannabinoid CB_1 receptor antagonist, AM251, resembled the effects of JWH 133, at doses selective for CB_1 receptors, but not at the highest dose tested (1 mg/kg) that targets both cannabinoid CB_1 and CB_2 receptors (D). Administration of 2-arachidonoylglycerol, a full agonist at both cannabinoid CB_1 and CB_2 receptors, did not modify glucose homeostasis (E). Data are means \pm S.E.M. of 8–10 determinations per group. (*, # and &) P<0.01 different doses *versus* vehicle-treated animals, Newman–Keul's.

Download English Version:

https://daneshyari.com/en/article/2536203

Download Persian Version:

https://daneshyari.com/article/2536203

<u>Daneshyari.com</u>