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Abstract

A hitherto unavailable highly accurate nonlinear finite element method (FEM)-based analysis technique for the prediction of large
deformation response of highly shear-flexible arbitrarily laminated general shells of arbitrary geometry is presented. The nonlinear finite
element utilizes the method of virtual work, and total Lagrangian (TL) formulation. It is based on the assumptions of transverse inex-
tensibility, vanishing transverse normal strain, and layer-wise constant shear-angle theory (LCST), also known as the zigzag theory. The
analysis includes fully nonlinear strain–displacement relations for the remaining five strain components. The components of displace-
ments and stresses are computed using variable-node layer-elements of triangular plan-form.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A reliable prediction of the response of thick laminated
shell-type structures, made of high performance composite
materials (e.g. graphite/epoxy, graphite/PEEK) necessi-
tates the incorporation of the transverse shear deformation
or cross-sectional warping into the formulation [1–3]. The
majority of investigations pertaining to laminated shells
are based on either classical lamination theory (CLT) or
first-order shear deformation theory (FSDT), based on
the Love–Kirchhoff and the Reissner–Mindlin hypotheses,
respectively. The latter hypothesis implies constant cross-
sectional warping [4,5], while the former means absence
of the same. However, since the cross-sectional warping
in a laminated shell may often be very severe (and non-uni-
form) due to the combined effects of thickness, lamination
and the possibility of a high degree of anisotropy, use of
the CLT or FSDT may lead to serious error. An improved
theory known as the layer-wise constant shear-angle theory

(LCST), also known as the zigzag theory, which allows for
a piece (layer)-wise constant approximation of the non-uni-
form cross-sectional warping, leading to a quasi-3D elastic-
ity solution in the limit, therefore, becomes an excellent
practical alternative [1–3]. The primary advantage of the
LCST-type theories lies in the fact that the f-dependence
of the quantities of interest, such as displacements and
stresses, can be separated from its surface-parallel (a,b)
counterparts, and as a result, the through-layer-thickness
integration of the stiffnesses can be performed in closed-
form, which saves computation time (see Figs. 1,2) for
coordinate system, shell geometry and the LCST-base lam-
inated shell element of triangular plan-form.

It also has long been recognized that problems of post-
buckling, collapse and compression fracture behaviors of
shell-type structures cannot be predicted by linear theory as
these phenomena are usually associated with large displace-
ments and rotations. Nonlinear theory must be incorporated
to compute such large displacements and rotations as
obtained in such behaviors [6–14]. A numerical procedure,
such as the finite element method (FEM), appears to be a via-
ble practical approach because of the ease with which the
problems of geometric, material and contact nonlinearities,
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arbitrary shell geometry, non-uniform thickness, stiffeners
and attachments, etc., can be handled by this method.

Noor and Hartley [15] were possibly the first to present
large deformation analysis of laminated shells using mixed
isoparametric triangular and quadrilateral elements. Their
formulation is based on shallow shell theory that also
includes the effect of interlaminar shear deformation. Lib-
rescu [16] introduced a higher-order shell theory into the
formulation of geometric nonlinearity, by utilizing Hellin-
ger–Reissner’s variational principle. Chang and Saw-
amiphakdi [17] presented large deformation analysis of
laminated shells using ‘‘degenerated” 3-D isoparametric

elements, in which they utilized the updated Lagrangian
(UL) nonlinear formulation. Epstein and Glockner [18]
assumed a piecewise smooth displacement field to solve
nonlinear finite element problems of multilayered shells.
A 16-node isoparametric layer-element, with eight nodes
on each of the top and bottom surfaces, was developed
by Kim and Chaudhuri [19] for prediction of large defor-
mation behavior of thick laminated composite cylindrical
shells and panels. The analysis, based on the hypothesis
of layer-wise linear displacement distribution through
thickness (LLDT), accounts for fully nonlinear kinematic
relations, in contrast to the commonly used von Karman
nonlinear strain approximation, so that stable equilibrium
paths in the advanced nonlinear regime can be accurately
predicted. The special case of a moderately thick cylindrical
shell isoparametric element, based on linear distribution

Nomenclature

[C(k)] constitutive relation matrix at time t for the kth
layer, relating the incremental second Piola–Kir-
chhoff stress and incremental Green–Lagrange
strain

eij covariant components of the Green–Lagrange
strain tensor

gij, gij covariant and contravariant components of the
metric tensor of the undeformed body

ga, gb first fundamental quantities of the undeformed
shell reference surface

M number of nodal points on a triangular element
interface

N number of layers
Ra, Rb radii of curvature of the undeformed shell refer-

ence surface
S area of the bottom surface of a layer-element

projected on the undeformed reference surface
t, tk total wall-thickness and kth layer-thickness

respectively
u(i), u(i) physical components of the displacement vector

fD bU g incremental nodal displacement vector

DW ðkÞ incremental work of the kth layer per unit area
of the undeformed reference surface

z distance measured from the bottom (reference)
surface of a laminated shell

a, b lines of curvature coordinates attached to the
undeformed reference surface of a laminated
shell

e(ij) physical components of the Green–Lagrange
strain tensor

{/} shape functions
hi contravariant components of undeformed coor-

dinates of a body
n1, n2, n3 area coordinates of an element of triangular

plan-form
f distance measured from the bottom surface of a

lamina
Left superscript time t at which the quantities are being

measured (time t is fictitious and used as an in-
dex for static problems, while real for a transient
problem)

Left subscript time, denoting the configuration, used as
coordinate system

Fig. 1. A laminated thick shell and the associated coordinate system.

Fig. 2. Triangular composite shell element and mapping of its ith layer
onto a straight-sided quadratic triangular element in the a–b plane
(M = 6).
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