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Three-dimensional thermo-elastic analysis of functionally graded (FG) rectangular plates with simply
supported edges subjected to thermo-mechanical loads are carried out in this paper. The thermo-elastic
constants of the plate were assumed to vary exponentially through the thickness, and the Poisson ratio

Keywords: was held constant. Analytical solutions for the temperature, stress and displacement fields are derived by
FIGM using the Fourier series and state-space method. To verify the accuracy of the present work, a comparison
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is made with previously published results. The effects of temperature change, applied mechanical load,
gradient index, aspect ratio and thickness to length ratio on the behavior of the plate are examined.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) are heterogeneous com-
posite materials with gradient compositional variation of the con-
stituents from one surface of the material to the other which
results in continuously varying material properties. FGMs were ini-
tially designed as thermal barrier materials for aerospace struc-
tures and fusion reactors. They are now developed for the
general use as structural components in high-temperature envi-
ronments, and consequently many studies on thermo-mechanical
characteristics of FGM plates are available in the literature. Wang
and Tarn [1,2] developed three-dimensional analysis of inhomoge-
neous plate by using an asymptotic expansion method. Instead of
exactly solving the heat conduction equation, they presumed a
temperature field a priori. for FGMs, Aboudi et al. [3] analyzed
the thermo-elastic response of FGM plate by using the Higher Or-
der Theory. Transient nonlinear thermo-elastic behavior of a FG
ceramic/metal plate was investigated by Praveen and Reddy [4]
by applying the von Karman plate theory and the finite element
method. Reddy and Chin [5] carried out theoretical as well as finite
element analyses of the thermo-mechanical behavior of FGM cylin-
ders and plates. Ootao and Tanigawa [6] obtained analytical solu-
tions for unsteady-state thermal stress of FG rectangular plate
subjected to partial heating. Thermo-mechanical deformations of
a FG elliptic plate with rigidly clamped edges was analyzed by
Cheng and Batra [7]. They found that through thickness distribu-
tions of the in-plane displacements and transverse shear stresses
in a FG plate do not agree with those assumed in classical and
shear deformation plate theories. The thermo-elastic behavior of
an orthotropic inhomogeneous rectangular plate was carried out
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by Kawamura et al. [8]. Reddy and Cheng [9] gave three-dimen-
sional analytical solution for thermo-mechanical response of sim-
ply supported, FG, rectangular plate by using an asymptotic
expansion method. Applying Mori-Tanaka’s method and assuming
a power law volume fraction distribution of the constituents, they
investigated the influence of the exponent of the volume fraction
law on the structural response under pure thermal or mechanical
loads. Three-dimensional deformations of a simply supported FG
rectangular plate subjected to mechanical and thermal loads on
its top and/or bottom surfaces have been analyzed by Vel and Batra
[10]. Vel and Batra [11] obtained three-dimensional transient ther-
mal stresses of FG rectangular plate by extending the analytical
technique reported in [10]. Tsukamoto [12] examined thermal
stresses in a ceramic-metal plate subjected to through-thickness
heat flow using the Mori-Tanaka scheme and the classical lami-
nated plate theory. Batra and Qian [13] presented transient re-
sponse of a thick FG plate, by using higher-order shear and
normal deformable plate theory and a meshless local Petrov-
Galerkin method. The exact solution for transient temperature
and thermal stresses of a FG strip with simply supported edges
due to a non-uniform heat supply in the width direction under
the plane strain condition was obtained by Ootao and Tanigawa
[14]. Ferreira et al. [15] derived static response of a thick plate
by using a meshless local Pettrov-Galerkin method based on
third-order shear deformation theory. Thermo-elastic solution for
transient thermal stresses of FG rectangular plate due to non-uni-
form heat supply was presented by Ootao and Tanigawa [16] using
series expansions of the Bessel functions. Three-dimensional exact
solution for the transient thermo-elastic response of an orthotropic
FG rectangular plate with simply supported edges due to a non-
uniform heat supply was obtained by Ootao and Tanigawa [17].
Thermo-elastic deformations of a simply supported, FG, rectangu-
lar plate was derived by Brischetto et al. [18] by using principle of
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Nomenclature
ab plate dimension in x and y directions
E, o, %  Young's modulus, thermal expansion coefficient and

thermal conductivity coefficient, respectively

Eo, %0, 40 Young's modulus, thermal expansion coefficient and
thermal conductivity coefficient at the bottom surface,
respectively

Ep, o, 2n Young's modulus, thermal expansion coefficient and
thermal conductivity coefficient at the top surface,
respectively

h plate thickness

n,m number of half waves in x and y direction

U V,W displacement in x-, y- and z-directions, respectively
Yz Vzx Yxy Shear strains

o; (i=x,y,z) normal stresses

& (i=x,¥,z) normal strains
Tz Tzw Txy Shear stresses

virtual displacements. Matsunaga [19] presented thermo-elasticity
solution of FG rectangular plate with simply supported edges and
subjected to thermal and mechanical loads by using a two-dimen-
sional higher-order shear deformation theory. As the aforemen-
tioned works show, the exact solution for FGM rectangular plate
subjected to thermo-mechanical load by making the use of state-
space method has not been yet considered and the present work
attempts to do this.

In this paper, thermo-elastic solution for FG plate with finite
length and simply supported edges under pressure and thermal
loads is presented. Material properties of the FG plate is assumed
to be graded in the thickness direction according to a simple expo-
nent-law distribution in terms of the volume fractions of the con-
stituents. The partial differential equations are reduced to the
ordinary one by expanding the state and induced variables into
double Fourier series with respect to the in-plane coordinates
and then are solved by state-space method.

2. Basic equations

A functionally graded rectangular plate with length a, width
b and thickness h, as shown in Fig. 1, is considered. The plate is
simply supported at all edges and subjected to uniform steady-
state temperature loads, T, and uniform pressure, Py on the top
surface and zero temperature on the bottom surface as well as
on the four ends surfaces. The FG plate is transversely isotropic
with constant Poisson’s ratio, v and the other material thermo-
elastic properties with the exponential distribution across the
thickness, as follow:

E = Egef? (1a)
o = aget? (1b)
J= Jgef (1c)

where f31, 82, f3 are material constants which ; = 8, = 83 = 0 the FG
plate reduce to a homogeneous plate.

Thermo-elastic constitutive relations of FG plate in term of
displacements are as follows:
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Fig. 1. Functionally graded plate with coordinate system.
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Ty = m(uy +vy)
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The stress components should satisfy the following equilibrium
equations:

Oxx + Tayy + Tazz =0
Tayx + Oyy + Tyzz =0 (3)
Txzx + Tyzy + 022 = 0

The steady state three-dimensional heat conduction equation is ta-
ken in the following form:

o*T o*T ), 0T T

The thermal, displacements and stresses boundary conditions are

1(0,y,z) =T(a,y,z) =0 (5a)
T(x,0,z) =T(x,b,z) =0 (5b)
T(x,y,0)=T; (5¢)
T(x,y,h) =To (5d)
0;,=-Py,Tx=1,=0 atz=nh (6a)
0;,=Txx=T,,=0 atz=0 (6b)
ogo=v=w=0 atx=0,a (6¢)
oy=u=w=0 aty=0,b (6d)

3. Analytical solution for temperature field

The assumed solution to Eq. (4) satisfying the temperature
boundary conditions, (6a) and (6b), is

m=1 n=

Tmne™ "2 sin(p,,x) sin(p,y) (7)
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