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a b s t r a c t

The dynamic response of thick laminated annular sector plates with simply supported radial edges sub-
jected to a radially distributed line load, which moves along the circumferential direction, is studied. A
three-dimensional hybrid method composed of series solution, the layerwise theory and the differential
quadrature method in conjunction with the finite difference method is employed. The fast rate of conver-
gence and high accuracy of the method are demonstrated through different examples. Additionally, as a
limit case, the out-of-plane dynamic responses of circular curved beams is obtained and compared with
those of an unconstrained higher order shear deformation curved beam theory, which is formulated here.
Then, the effects of different parameters such as the sector angle, thickness-to-outer radius ratio, ply lay
out and the load velocity on the out-of-plane response of the symmetric and antisymmetric cross-ply
laminated sector plates are investigated. The results can be used as benchmark solutions for future works.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Laminated annular sector plates have found wide applications
as structural members in aerospace, marine and other industries.
In the limit case that the width of the annular sector plate is small
in comparison with its outer radius, it can be treated as a circular
curved beam. There are a lot of research works on the free vibra-
tion analyses of isotropic and laminated sector plates, some recent
works of which are cited in Refs. [1–7]. However, to the best of
authors’ knowledge, the dynamic analysis of such a structural ele-
ments under the action of moving load is limited to out-of-plane
response of curved beams [8,9].

To fill this gap, and as a continuation of the previous work of the
first author [7], the dynamic response of symmetric and antisym-
metric laminated annular sector plates subjected to a radially dis-
tributed line load, which moves along the circumferential
direction, is studied here. For this purpose, an approach benefits
the capability of the layerwise theory to accurately model the var-
iation of material properties across the thickness [10–12], and the
differential quadrature method (DQM) as an efficient and accurate
numerical method to discretize the variable coefficients differen-
tial equations in the radial direction [7,13–17] is adopted. The tem-
poral domain is discretized using the finite difference method. The
formulation is based on the three-dimensional linear elasticity the-

ory. After studying the convergence behavior of the method, as a
limit case, the out-of-plane responses of laminated circular curved
beams are obtained and comparison studies with those of an
unconstraint higher shear deformation theory (HSDT) are made.
Additionally, the static analyses of annular sector plates are inves-
tigated and comparison studies with available results are carried
out. Finally, the effects of different parameters such as the sector
angle, thickness-to-outer radius ratio, ply lay out and the load
velocity on the out-of-plane response of the symmetric and anti-
symmetric cross-ply laminated sector plates are investigated.

2. Mathematical modeling

Consider a laminated thick annular sector plates composed of
NL perfectly bonded orthotropic layers of width b, total thickness
h, sector angle h0, inner radius Ri and outer radius Ro (Fig. 1). Each
lamina is considered to be cylindrically orthotropic with the fiber
orientation being either in the radial or circumferential direction.
The fiber angle is measured from the radial axis.

Based on the three-dimensional layerwise theory, the laminated
plate is divided into NmðP NLÞmathematical layers. In each lamina,
the displacement components are approximated in a similar man-
ner as the one-dimensional finite element method. In the present
study, one-dimensional Lagrange interpolation functions are used
in each mathematical layer and hence the global interpolation
function ui can easily be obtained [18]. Then, for the sector plates
with simply supported radial edges, the displacement components
at an arbitrary material point of the plate can be expressed as
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where bm = mp/h0; u, v and w are the displacement components
along the radial (r), the circumferential (h) and the thickness (z)
directions, respectively; ui denotes the global interpolation function
of the node ‘i’ (defined by z = zi) in the z-direction and its explicit
form is given in Ref. [18]; Uim, Vim and Wim represent the displace-
ment functions of node ‘i’ in the r, h- and z-directions, respectively;
Nz stands for the total number of nodes through-the-thickness of
the plate [7,18].

The through-the-thickness and the circumferential discretized
equations of motion at each layerwise node ‘i’ can be obtained by
using the Hamilton’s principle, which in this case turns into,Z t2
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where q(k) is the mass density of the kth layer; t is the temporal var-
iable; t1 and t2 are two arbitrary times; p(r, h, t) is the transverse
load per unit area on the upper surface of the plate; d is the delta
function; eii and cij (i, j = r, h, z with i – j) are the normal and the
shear components of the strain tensor, respectively; and rij (i,
j = r, h, z) are the stress tensor components.

Substituting the three-dimensional strain–displacement and
the stress–strain relations [7] together with Eq. (1) into Eq. (2),
yields the equations of motion and the related boundary conditions
at each node ‘i’ with i = 1, 2, . . . , Nz as,

Equations of motion:
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Boundary conditions on the surfaces r = Ri and Ro:

Either Uimðr; tÞ ¼ 0 or
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where pmðr; tÞ ¼ 2
h0

� 	 R h0
0 pðr; h; tÞ sinðbmhÞdh and dij is the Kronecker

delta. The stiffness and inertia coefficients are obtained by exact
integrations from the following expressions,
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where CðkÞmn are the elastic coefficients of the kth layer [18].
Since it is very hard, if it not impossible, to obtain an exact solu-

tion for the coupled and variable coefficients differential Eqs. (3)–
(5), here the differential quadrature method as an efficient, simple
and accurate numerical method is applied here [7,13–17].
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Fig. 1. An arbitrary laminated thick annular sector plate.
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