Contents lists available at ScienceDirect

Fitoterapia

journal homepage: www.elsevier.com/locate/fitote

Lignans from the roots of *Acorus tatarinowii* Schott ameliorate β amyloid-induced toxicity in transgenic *Caenorhabditis elegans*

ABSTRACT

Xiao-Hua Luo¹, Ying-Ying Zhang¹, Xin-Yan Chen, Meng-Lu Sun, Shan Li, Hong-Bing Wang*

especially, it still has 30.8% extension at 10 µM.

School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China

A R T I C L E I N F O

Article history: Received 9 October 2015 Received in revised form 11 November 2015 Accepted 13 November 2015 Available online 14 November 2015

Keywords: Acorus tatarinowii Lignan C. elegans Paralysis

1. Introduction

Alzheimer's disease (AD) is a neurodegenerative disorder, and it is the most common cause of dementia in the aged population. Abnormal accumulation of β -amyloid peptide (A β) in the brain is regarded to be important in this disease. Thus, many efforts have been made to develop strategies targeting A β for the prevention and treatment of AD [1,2].

The roots of *Acorus tatarinowii* Schott (Araceae) are a well-known traditional Chinese medicine used in the improvement of memory and cognition [3]. It has reported that extract of *A. tatarinowii* can protect PC12 cells from amyloid- β induced neurotoxicity [4]. β -asarone, the major ingredient of *A. tatarinowii* Schott, has neuroprotective effects *in vitro* and *in vivo* [5,6,7].

In order to further study the effective material basis of title plant with anti-AD, we used the CL4176 transgenic *Caenorhabditis elegans* (*C. elegans*) as a model organism to examine the protective effects of isolated compounds *via* the potential reduction of A β toxicity. The CL4176 transgenic *C. elegans* strain was engineered to inducibly express human A β_{1-42} peptide in muscle, and the expression and subsequent aggregation of A β in the muscle lead to progressive paralysis when temperature is raised [8,9]. This strain has already been employed as *in vivo* models of AD and used to demonstrate the effect of *Ginkgo biloba* extract EGb 761 [10], Liuwei Dihuang [11], and tetracycline [12], in counteracting the A β toxicity.

During our research periods, tatarinan T (1), a novel tetralignan with the rare C8-C7' linkage pattern, along with a known monolignan (2)

E-mail address: hbwang@tongji.edu.cn (H.-B. Wang).

¹ These authors contributed equally to this work.

[13] were isolated. We individually investigated their anti-A β potential using CL4176 transgenic *C. elegans*, and found that these two compounds showed potential protective effect by delaying paralysis of worms. The present paper reported the isolation, structural elucidation, and anti-A β activity of these two lignans.

A novel tetralignan, tatarinan T (1) with the rare C8-C7' linkage pattern, along with a known monolignan (2)

were isolated from the roots of Acorus tatarinowii Schott. Their chemical structures were elucidated on the

basis of NMR and X-ray diffraction analysis. We evaluated the protective effects of two rare lignans against

β-amyloid toxicity by using CL4176 transgenic *C. elegans* model for the first time, and found that they significantly

delayed paralysis of worms at the concentration of 100 μ M. Compound **2** exhibited the more potential protective effect against β -amyloid toxicity, its value of PT₅₀ extended up to 62.3% at 100 μ M compared with control,

2. Experimental

2.1. General

Optical rotations were measured with a Rudolph autopol VI polarimeter. The IR spectra were recorded on a Nicolet Magna IR spectrophotometer. The NMR spectra were run on a Bruker AM-400 spectrometer with TMS as internal standard. HR-EI-MS spectra were carried out on a Bruker Apex IV FT-MS spectrometer. Column chromatographic separations were carried out on silica gel H-60 (Qingdao Haiyang Chemical Group Corporation, Qingdao, People's Republic of China), and LiChroprep RP-18 (40–63 µm, Merck). TLC was carried out on silica gel HSGF254 plates (Yantai Chemical Industrial Institute, Yantai, People's Republic of China), and spots were visualized by spraying with concentrated sulfuric acid-vanillin solution followed by heating.

2.2. Plant material

The roots of *A. tatarinowii* Schott, in dried form, were purchased from Kangqiao Pharmaceutical Co., Ltd., Shanghai, China, in 2010. A reference sample was deposited in the Tongji Herbarium.

.

© 2015 Elsevier B.V. All rights reserved.

^{*} Corresponding author.

Table 1	
^{1}H (400 MHz) and ^{13}C (100 MHz) NMR data for 1 in CDCl ₃ (δ in ppm, J in Hz).	

Position	δ_{C}	δ_{H}	Position	δ_{C}	δ_{H}
1	128.9		7″	40.4	2.58, m
2	152.4		8″	40.8	1.67, m
3	97.6	6.47, s	9″	12.5	0.85, d (6.62)
4	151.7		1‴	125.1	
5	140.4		2‴	151.5	
6	137.5		3‴	96.8	6.45, s
7	52.4	3.95, m	4‴	147.2	
8	42.4	1.25, m	5‴	141.1	
9	24.4	0.90, d (6.43)	6‴	114.4	6.27, s
1′	123.2		7‴	43.1	3.57, m
2′	152.7		8‴	17.8	1.80, m
					1.56, m
3′	98.5	6.41, s	9‴	12.8	0.56, t (7.08)
4′	147.3		OMe	55.5	3.47, s
5′	142.5		OMe	55.6	3.57, s
6′	113.4	6.69, s	OMe	55.7	3.57, s
7′	53.8	3.00, s	OMe	56.1	3.57, s
8′	35.8	2.76, m	OMe	56.1	3.64, s
9′	12.7	0.23, d (7.24)	OMe	56.4	3.80, s
1″	125.3		OMe	56.5	3.82, s
2″	152.4		OMe	56.8	3.82, s
3″	96.0	6.48, s	OMe	56.8	3.85, s
4″	147.1		OMe	57.2	3.85, s
5″	141.8		OMe	57.6	3.87, s
6″	114.8	6.56, s	OMe	60.2	3.92, s

2.3. Extraction and isolation

The air-dried roots of A. tatarinowii Schott (5.0 kg) were powdered and then extracted three times with 95% ethanol at room temperature. The combined ethanol extracts were concentrated under reduced pressure to give a residue (700 g), which was then partitioned successively with CHCl₃ and *n*-BuOH, respectively. The CHCl₃ extract (200 g) was subjected to silica gel column chromatography using a gradient solvent system of petroleum ether-acetone (50:1.25:1.15:1.10:1.5:1.2:1.1:1. v/v) to afford 6 fractions (Fr. 1–Fr. 6). Fr. 2 was subjected to silica gel column chromatography repeatedly and eluted with petroleum ether-EtOAc (15:1, 10:1, 5:1, 2:1, 1:1, v/v) to afford 6 fractions (Fr. 2a–Fr. 2f). Fr. 2a was subjected to repeated silica gel column chromatography with gradient elution with petroleum ether-acetone (20:1, 10:1, 5:1, 2:1, 1:1, v/v) to yield compound 2 (102.0 mg). Fr. 2d was chromatographed repeatedly on a RP-18 column eluting with acetone- $H_2O(1:1, 2:1, 3:1, v/v)$, and a silica gel column eluting with a petroleum ether-EtOAc (5:1, 2:1, 1:1, v/v) to obtain compound 1 (10.6 mg).

Fig. 2. Key HMBC correlations of compound 1.

2.4. Spectral data of new compound

Colorless needles; $[\alpha]_D^{25}$ -19.0 (c 0.05, CHCl₃); IR (KBr) ν_{max} 2963, 2952, 2936, 2833, 1608, 1509, 1465, 1325, 1232, 1204, 1177, 1039, 983, 813 cm⁻¹; ¹H and ¹³C NMR: see Table 1; HREIMS m/z 855.4282 [M + Na]⁺ (calcd for C₄₈H₆₄O₁₂Na 855.4290).

2.5. X-ray analysis

Crystal data for compound 1: formula $C_{48}H_{64}O_{12}$; Mr. = 832.99; monoclinic crystalline system; space group Fdd2; unit cell dimensions a = 61.796 (5) Å, b = 10.2319 (9) Å, c = 30.175 (3) Å; V = 19,080 (3) Å3; Z = 16; $Dx = 1.160 \text{ mg/m}^3$; absorption coefficient 0.082 mm⁻¹; F (000) = 7168; R (reflections) = 0.1175 (8867); wR2 (reflections) = 0.1890 (8867). Colorless crystals of **1** were obtained in a mixed solvent of petroleum ether and acetone.

Crystal data for compound **2**: formula $C_{24}H_{32}O_6$; Mr. = 416.49; monoclinic crystalline system; space group P21/n; unit cell dimensions a = 7.054 (2) Å, b = 11.912 (4) Å, c = 27.117 (8) Å; V = 2272.1 (12) Å3; Z = 4; Dx = 1.218 mg/m³; absorption coefficient 0.086 mm⁻¹; F (000) = 896; R (reflections) = 0.0949 (4230); wR2 (reflections) = 0.2081 (4230). Colorless crystals of **2** were obtained in a mixed solvent of petroleum ether and acetone.

Crystal data were obtained on a Bruker Smart Apex CCD diffractometer, using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). Crystallographic data for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre, deposit No. CCDC 1425333 for **1**, and CCDC 1427221 for **2**. Copies of the data can be

Fig. 1. Chemical structures of compounds 1 and 2.

Download English Version:

https://daneshyari.com/en/article/2538233

Download Persian Version:

https://daneshyari.com/article/2538233

Daneshyari.com