Contents lists available at ScienceDirect

Fitoterapia

journal homepage: www.elsevier.com/locate/fitote

Jicheng Shu, Fang Liang, Jian Liang, Yonghong Liang, Fengqin Li, Feng Shao, Ronghua Liu, Huilian Huang *

Key Laboratory of Modern Preparation of TCM, Jiangxi University of Traditional Chinese Medicine, Ministry of Education, Nanchang 330004, China

ARTICLE INFO

ABSTRACT

Received 20 April 2015 Accepted in revised form 12 May 2015 Available online 16 May 2015

Keywords: Smilax trinervula Phenylpropanoids Neolignans Cytotoxic activity

Article history

A new phenylpropanoid glucoside and two new neolignans, namely (1S, 2R)-1-(3, 4, 5-trimethoxyphenyl)-3-(β -D-glucopyranosyloxy)-1, 2, 3-propanetriol (1), and (7R, 8R)-4, 7, 9, 9'-tetrahydroxy-3, 5, 3', 5'-tetramethoxy-8-4'-oxyneolignan 4-O- β -D-glucopyranoside (2) and 3', 9, 9'-trihydroxy-3, 5-dimethoxy-8-O-4'-neolignan-4-O- β -D-glucopyranoside (3), together with a new natural product (1S, 2R)-1-(3, 4, 5-trimethoxyphenyl)-1, 2, 3-propanetriol (4) and four known compounds (5–8) were isolated from the rhizomes of *Smilax trinervula*. Their structures were established mainly on the basis of 1D and 2D NMR spectral data, ESI-MS and literature comparisons. Compounds 1–8 were tested in vitro for their cytotoxic activities against 5 human tumor cell lines (SH-SY5Y, SGC-7901, HCT-116, Lovo and Vero). Compounds 7 and 8 exhibited cytotoxic activity against Lovo, with IC₅₀ values of 18.7 μ M and 16.8 μ M, respectively.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The genus *Smilax* (Smilacaceae) comprises about 370 species, which are mainly distributed in the tropical and temperate zones throughout the world, especially in East Asia and North America [1], and there are 2 genera and about 200 species of plants in China [2]. *Smilax trinervula* (*S. trinervula*), a perennial plant distributed widely in South China, such as Jiangxi, Guizhou and Anhui Provinces, and the rhizomes and roots are source of Chinese crude drug "Ba-Qia", which has been used to eliminate dampness and treat pelvic inflammation and chronic pelvic inflammation [2]. It is commonly used as traditional Chinese medicine and it has been recorded in an endemic Pharmacopoeia in China. It's interesting that our previously investigation found that the extract of *S. trinervula* has good cytotoxic and antitumor bioactivities [3].

Previous phytochemical studies of this genus focused on *Smilax china, Smilax macrophylla, Smilax riparia, Smilax glabra,* and *Smilax bracteata,* and have led to the isolation of some characteristic steroidal saponins, flavonoids and lignans [4–8]. However, to our best knowledge, until now, no literature was reported on constituents isolated from *S. trinervula.* In our continuous search of potentially bioactive compounds from the genus *Smilax* medicinal plants, we examined the crude EtOH extract from the rhizomes of *S. trinervula.* The paper described the isolation, structure elucidation and cytotoxic activity components.

* Corresponding author. *E-mail address:* huilianh@163.com (H. Huang).

2. Experimental

2.1. General procedure and regents

¹H (400 MHz), ¹³C (100 MHz), and 2D NMR spectra were obtained on Bruker AV-400 and with TMS as internal reference, used methanol d_4 as solvents. Electrospray ionization (ESI) mass spectra were acquired in the positive ion mode on a LCQ DECAXP instrument (Thermo Finnigan, San Jose, CA, USA) equipped with an ion trap mass analyzer. HR-ESI-MS were obtained in the positive ion mode on a Waters UPLC Premier O-TOF mass spectrometer. CD spectra were obtained on an Olis DSM 1000 spectrometer. Optical rotations were acquired on a Krüss-P800-T polarimeter. TLC plates were HSGF254 SiO₂ from Yantai Jiangyou Silica Gel Development Co., Ltd., China. Column chromatography (CC) silica gel (SiO₂; 200–300 mesh; Qingdao Haiyang Chemical Co., Ltd., Qingdao, China), Sephadex LH-20 (GE-Healthcare Bio-Sciences AB, Uppsala, Sweden), and ODS (Grace C₁₈, Grace Davison Discovery Sciences) were employed as packing materials, semi-preparative HPLC (Grace Prevail C_{18} column, 5 μ m, 10.0 mm I.D. \times 250 mm, USA). All other chemicals were of analytical reagent grade.

2.2. Plant materials

The rhizomes of *S. trinervula* were collected from Yichun City, Jiangxi Province, China in May 2011. A voucher specimen (No. 20110502) was deposited at the Key Laboratory of Modern Preparation of TCM, Jiangxi University of Traditional Chinese Medicine, China.

CrossMark

Table 1 1 H NMR of compounds 1, 4 and 5 at 400 MHz in MeOH- d_4 (δ in ppm, J in Hz).

Position	1	4	5
1	4.66 (d, J = 6.0)	4.55 (d, J = 6.2)	4.59 (d, J = 5.4)
2	3.81 (<i>m</i>)	3.72 (<i>m</i>)	3.68 (m)
3	3.90 (dd, J = 5.4, 10.3)	3.66 (dd, J = 5.3, 11.2)	3.54 (dd, J = 4.2, 11.0)
	3.38 (<i>dd</i> , <i>J</i> = 6.5,10.3)	3.59 (<i>dd</i> , <i>J</i> = 6.5, 11.2)	3.40 (<i>dd</i> , <i>J</i> = 6.2, 11.0)
1′	-	-	-
2′	6.75 (s)	6.72 (s)	6.72 (s)
3′	-	-	-
4′	-	-	-
5′	-	-	-
6′	6.75 (s)	6.72 (s)	6.72 (s)
3′,5′-OCH ₃	3.84 (s)	3.84 (s)	3.84 (s)
4'-0CH ₃	3.74 (s)	3.74 (s)	3.74 (s)
glc-1	4.22 (d, J = 7.7)	-	-
glc-2	3.20-3.32 (m)	-	-
glc-3	3.20-3.32 (m)	-	-
glc-4	3.20-3.32 (m)	-	-
glc-5	3.20-3.32 (m)	-	-
glc-6	3.64 (dd, J = 5.4, 11.9)	-	-
	3.82 (m)*		

2.3. Extraction and isolation

The rhizomes of *S. trinervula* (30 kg) were extracted with 70% (ν/ν) aqueous ethanol. The 70% EtOH extract was concentrated under reduced pressure to give a residue (2705 g), which was extracted with EtOAc and n-BuOH, respectively. The EtOAc extract was concentrated to yield the EtOAc fraction 249.2 g, and the n-BuOH extract was concentrated to get the n-BuOH fraction 470.3 g. Part of the dried n-BuOH extract (about 350 g) was subjected to macroporous resin column chromatography with gradient mixtures of H₂O/MeOH (100% H₂O, 30% MeOH, 50% MeOH, 70% MeOH and 95% MeOH), which yielded six major fractions (*Frs.* 1–6). *Fr.* 1 (64.4 g) was further subjected to repeated CC (silica gel, CHCl₃/MeOH and Sephadex LH-20, MeOH), then followed by semipreparative HPLC (18% MeOH/H₂O, 3.0 ml/min) to yield **1** (30 mg, t_R 18.2 min), **2** (6 mg, t_R 20.5 min), **3** (5 mg, t_R 28.1 min), **4** (14 mg, t_R 14.5 min), **5** (8 mg, t_R 37.0 min).

2.3.1. (15, 2R)-1-(3, 4, 5-trimethoxyphenyl)-3-(β -D-glucopyranosyloxy)-1, 2, 3-propanetriol (1)

Whiter powder (MeOH); $[\alpha]_{D}^{25} - 26^{\circ}$ (c 0.0012, MeOH); UV (MeOH) λ_{max} (logc) 230 (0.28) nm; HR-ESI-MS *m*/*z* 421.1706 [M + H]⁺ (calcd for C₁₈H₂₉O₁₁); ¹H NMR and ¹³C NMR see Tables 1 and 2.

Table 2 13 C NMR of compounds **1**, **4** and **5** at 100 MHz in MeOH- d_4 (δ in ppm).

Position	1	4	5
1	75.8	76.2	75.3
2	76.0	76.7	77.4
3	72.2	64.4	64.2
1'	139.4	139.5	139.7
2′	105.1	105.4	105.0
3′	154.3	154.2	154.3
4′	138.2	138.2	138.2
5′	154.3	154.2	154.3
6′	105.1	105.4	105.0
3',5'-OCH ₃	56.6	56.5	56.5
4'-0CH ₃	61.1	61.1	61.1
glc-1	104.9	-	-
glc-2	75.2	-	-
glc-3	77.9	-	-
glc-4	71.6	-	-
glc-5	77.9	-	-
glc-6	62.6	-	-

Table 3 ¹H NMR of compounds **2** and **3** at 400 MHz in MeOH- d_4 (δ in ppm, *J* in Hz).

Position	2	3
1	_	-
2	6.80 (s)	6.60 (s)
3	_	_
4	_	-
5	_	-
6	6.80 (<i>s</i>)	6.60 (<i>s</i>)
7	5.01 (d, J = 5.8)	2.94 (dd, J = 6.8, 12.5)
8	4.08 (ddd, J = 4.0, 5.8, 6.0)	4.40 (<i>m</i>)
9	3.40-3.42 (<i>m</i>)	3.63–3.66 (<i>m</i>)
	3.81 (<i>m</i>)	
OCH ₃	3.82 (s)	3.79 (s)
1'	-	-
2'	6.52 (<i>s</i>)	6.80 (d, J = 2.0)
3′	-	-
4′	_	-
5′	-	6.81 (d, J = 8.2)
6′	6.52 (<i>s</i>)	6.67 (dd, J = 2.0, 8.2)
7′	2.63 $(t, J = 7.5)$	2.59(t, J = 7.4)
8′	1.82 (<i>m</i>)	1.79 (<i>m</i>)
9′	3.56(t, J = 6.4)	3.54(t, J = 6.5)
OCH ₃	3.83 (s)	-
a, a', c, c'	-	-
b, b′	-	-
glc-1	4.82 (d, J = 7.5)	4.78 (d, J = 7.3)
glc-2	3.44–3.49 (<i>m</i>)	3.43–3.45 (<i>m</i>)
glc-3	3.40-3.42 (<i>m</i>)	3.38–3.41 (<i>m</i>)
glc-4	3.40-3.42 (<i>m</i>)	3.38–3.41 (<i>m</i>)
glc-5	3.20 (<i>m</i>)	3.17-3.20 (<i>m</i>)
glc-6	3.76 (<i>m</i>)	3.63-3.66 (<i>m</i>)
	3.67 (dd, J = 9.0, 12.0)	3.74–3.77 (<i>m</i>)

2.3.2. (7R, 8R)-4, 7, 9, 9'-tetrahydroxy-3, 5, 3', 5'-tetramethoxy-8-4'oxyneolignan 4-O-β-D-glucopyranoside (**2**)

Whiter powder (MeOH); $[\alpha]_D^{25} - 31^\circ$ (c 0.0021, MeOH); UV (MeOH) λ_{max} (log ϵ) 232 (0.25) nm; HR-ESI-MS *m*/*z* 601.2500 [M + H]⁺ (calcd for C₂₈H4₁O₁₄); ¹H NMR and ¹³C NMR see Tables 3 and 4.

Table 4
^{13}C NMR of compounds 2 and 3 at 100 MHz in MeOH-d ₄ (δ in ppm).

Position	2	3
1	139.2	136.5
2	105.8	108.6
3	153.9	153.9
4	135.4	134.8
5	153.9	153.9
6	105.8	108.6
7	74.2	38.5
8	88.3	82.9
9	61.8	63.9
OCH ₃	57.0	57.0
1′	140.0	137.7
2'	106.7	114.0
3′	154.1	151.7
4'	135.3	146.9
5′	154.1	118.5
6′	106.7	121.8
7′	33.4	32.7
8′	35.4	35.6
9′	62.2	62.2
OCH ₃	56.6	-
a, a', c, c'	-	-
b, b′	-	-
glc-1	105.5	105.6
glc-2	75.7	75.7
glc-3	77.8	77.8
glc-4	71.3	71.3
glc-5	78.4	78.3
glc-6	62.6	62.6

Download English Version:

https://daneshyari.com/en/article/2538262

Download Persian Version:

https://daneshyari.com/article/2538262

Daneshyari.com