Contents lists available at ScienceDirect

### Fitoterapia

journal homepage: www.elsevier.com/locate/fitote

# Cytotoxic and anti-inflammatory *ent*-kaurane diterpenoids from *Isodon wikstroemioides*

Hai-Yan Wu<sup>a,b</sup>, Wei-Guang Wang<sup>a</sup>, Hua-Yi Jiang<sup>a,b</sup>, Xue Du<sup>a</sup>, Xiao-Nian Li<sup>a</sup>, Jian-Xin Pu<sup>a,\*</sup>, Han-Dong Sun<sup>a,\*</sup>

<sup>a</sup> State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China <sup>b</sup> University of Chinese Academy of Sciences, Beijing 100049, PR China

#### ARTICLE INFO

Article history: Received 27 June 2014 Accepted in revised form 4 August 2014 Available online 12 August 2014

Keywords: Lamiaceae Isodon wikstroemioides ent-Kaurane diterpenoid Cytotoxicity

### ABSTRACT

Seven new *ent*-kaurane diterpenoids, isowikstroemins A–G (1–7), were isolated from EtOAc extracts of the aerial parts of *Isodon wikstroemioides*. Their structures were elucidated by extensive spectroscopic analysis. The isolates were evaluated for their cytotoxicity against five human tumor cell lines, and compounds 1–4 exhibited significant activity with  $IC_{50}$  values ranging from 0.9 to 7.0  $\mu$ M. In addition, compounds 1, 2, 3, 4, and 7 exhibited inhibitory activity against nitric oxide (NO) production in LPS-activated RAW264.7 macrophages.

2. Experimental

2.1. General experimental procedures

© 2014 Elsevier B.V. All rights reserved.

### 1. Introduction

The genus *Isodon* (Lamiaceae) includes about 150 species and is distributed all over the world [1,2]. The use of *Isodon* species in Chinese folk medicines has a long tradition [3]. Over the past 30 years, phytochemical investigation of this genus has isolated and elucidated a large number of diterpenoids including *ent*-kaurane-type, abietane-type, isopimarane-type, gibberellane-type, labdane-type, and clerodane-type [4]. Many obtained diterpenoids exhibited interesting biological properties, such as antitumor, anti-inflammatory, and antibacterial activities [5–7].

*Isodon wikstroemioides* (Hand.-Mazz.) H. Hara, a perennial herb, is primarily distributed in the northwestern regions of Yunnan Province and the western district of Sichuan Province

\* Corresponding authors at: State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China. Tel.: +86 871 65223251.

Melting points of the isolates were obtained on an XRC-1 apparatus and were uncorrected. Optical rotations were measured in MeOH with Horiba SEPA-300 and JASCO P-1020 polarimeters. UV spectra were recorded using a Shimadzu UV-2401A spectrophotometer. IR spectra were obtained on a Tenor 27 FT-IR spectrometer using KBr pellets. NMR spectra were

in the People's Republic of China [8]. Previous phytochemical investigations of this plant have resulted in the isolation of

44 ent-kauranoids [9,10]. In our continuing work, seven new

7,20-epoxy-ent-kauranoids, isowikstroemins A-G (1-7), have

been isolated from I. wikstroemioides. All of the isolates were

evaluated for their cytotoxicity against the HL-60, SMMC-7721,

A-549. MCF-7. and SW-480 human tumor cell lines. and tested

for their ability to inhibit LPS-induced NO production in

RAW264.7 macrophages. This paper reports the isolation, struc-

ture elucidation, and biological activities of these compounds.









*E-mail addresses*: pujianxin@mail.kib.ac.cn (J.-X. Pu), hdsun@mail.kib.ac.cn (H.-D. Sun).

recorded on Bruker AM-400, DRX-500, and DRX-600 spectrometers using TMS as the internal standard. All chemical shifts ( $\delta$ ) are expressed in ppm relative to the solvent signals. HREIMS was performed on an API QSTAR TOF spectrometer. X-ray crystallographic data were collected on a Bruker APEX DUO diffractometer equipped with an APEX II CCD using Cu  $K\alpha$  radiation. Column chromatography (CC) was performed with silica gel (100-200 mesh and 200-300 mesh; Qingdao Marine Chemical, Inc., Qingdao, People's Republic of China), LiChroprep RP-18 gel (40–63 µm, Merck, Darmstadt, Germany), and MCI gel (75–150 µm, Mitsubishi Chemical Corporation, Tokyo, Japan). Thin-layer chromatography was performed on precoated TLC plates (200–250  $\mu$ m thickness, silica gel 60 F<sub>254</sub>, Qingdao Marine Chemical, Inc.), and spots were visualized by UV light (254 nm) or by spraying heated silica gel plates with 10% H<sub>2</sub>SO<sub>4</sub> in EtOH. Preparative HPLC was performed on a Shimadzu LC-8A preparative liquid chromatograph with a Shimadzu PRC-ODS (K) column. Semi-preparative HPLC was performed on an Agilent 1100 liquid chromatograph with a ZORBAX SB-C<sub>18</sub> (9.4 mm  $\times$  25 cm) column.

### 2.2. Plant material

The aerial parts of *I. wikstroemioides* were collected in the Ranwu District of Sichuan Province, People's Republic of China, in July 2011 and identified by Prof. Xi-Wen Li at the Kunming Institute of Botany. A voucher specimen (KIB 20110939) has been deposited in the Herbarium of the Kunming Institute of Botany, Chinese Academy of Sciences.

#### 2.3. Extraction and isolation

The dried and powdered aerial parts of *I. wikstroemioides* (7.5 kg) were extracted with 70% aqueous acetone (14 L) three times (three days each time) at room temperature and filtered. The filtrate was concentrated under reduced pressure and then partitioned between EtOAc and H<sub>2</sub>O. The EtOAc-soluble portion (380 g) was subjected to silica gel CC (100–200 mesh, 11 × 120 cm, 2 kg), eluted with CHCl<sub>3</sub>/acetone (1:0–0:1 gradient system) that afforded fractions A–G. The fractions were then decolorized using MCl gel and eluted with 90:10 MeOH/H<sub>2</sub>O.

Fraction C (CHCl<sub>3</sub>/acetone, 8:2; 19 g), which was a brown gum, was subjected to RP-18 column chromatography  $(8 \times 50 \text{ cm}, \text{MeOH/H}_2\text{O} 27:73 \text{ to } 60:40 \text{ gradient})$  to provide three fractions, C1–C3. Fraction C2 (15 g) was separated into five subfractions (C2-1–C2-5) using RP-18 CC ( $6 \times 40$  cm, MeOH/H<sub>2</sub>O 25:75 to 40:60 gradient). C2-4 (9 g) was subjected to RP-18 CC ( $6 \times 40$  cm, CH<sub>3</sub>CN/H<sub>2</sub>O 35:65) to obtain **3** (4 g). C2-5 (5 g) was separated by preparative HPLC (6  $\times$  29 cm, CH<sub>3</sub>CN/H<sub>2</sub>O 34:66) to afford 7 fractions (C2-5-1-C2-5-7). C2-5-6 (40 mg) was submitted to semi-preparative HPLC (5  $\mu m,\,9.4\times250$  mm, flow rate 3 ml/min, UV detection at  $\lambda_{max} = 210, 254$ , and 280 nm, eluted with CH<sub>3</sub>CN/H<sub>2</sub>O 40:60,  $t_{\rm R} = 14$  min) to yield **6** (4 mg). Compound **1** (2.4 mg) was isolated from fraction C2-5-7 (210 mg) by semi-preparative HPLC (MeOH/H<sub>2</sub>O 60:40,  $t_R$  = 33 min). Fraction C3 (2 g) was separated by preparative HPLC (2.5  $\times$  27 cm, CH<sub>3</sub>CN/H<sub>2</sub>O 34:66) to afford 17 fractions (C3-1–C3-17). C3-10 (105 mg) was submitted to semi-preparative HPLC (5  $\mu$ m, 9.4  $\times$ 250 mm, flow rate 3 ml/min, UV detection at  $\lambda_{max} = 210$ , 254, and 280 nm, eluted with MeOH/CH<sub>3</sub>CN/H<sub>2</sub>O 15:30:55,  $t_{\rm R} = 7.7$  min) to yield **4** (22 mg). C3-11 (65 mg) was submitted to semi-preparative HPLC (5 µm, 9.4 × 250 mm, flow rate 3 ml/min, UV detection at  $\lambda_{\rm max} = 210$ , 254, and 280 nm, eluted with MeOH/H<sub>2</sub>O 65:35,  $t_{\rm R} = 13.5$  min) to yield **5** (11 mg).

Fraction D (CHCl<sub>3</sub>/acetone, 7:3; 50 g), a brown gum, was subjected to silica gel CC (9 × 80 cm, 200–300 mesh, 1 kg), and eluted with CHCl<sub>3</sub>/MeOH (80:1) to afford seven fractions (D1–D7). D4 (20 g) was applied to a silica gel column (5 × 60 cm, 200–300 mesh, 200 g) and eluted with CHCl<sub>3</sub>/MeOH (80:1) to afford six fractions (D4-1–D4-6). D4-4 (14 g) was separated by preparative HPLC (6 × 29 cm, CH<sub>3</sub>CN/H<sub>2</sub>O 30:70) and then semi-preparative HPLC (9.4 × 250 mm, flow rate 3 ml/min, UV detection at  $\lambda_{max} = 210, 254, and 280$  nm, eluted with CH<sub>3</sub>CN/H<sub>2</sub>O 33:67,  $t_R = 12.5$  min) to yield **7** (3 mg). Compound **2** (29 mg) was obtained from fraction D4-5 (200 mg) by semi-preparative HPLC (9.4 × 250 mm, flow rate 3 ml/min, UV detection at  $\lambda_{max} = 210, 254, and 280$  nm, eluted with CH<sub>3</sub>CN/H<sub>2</sub>O 22:78,  $t_R = 14$  min).

### 2.4. Spectroscopic data

Isowikstroemin A (1)colorless needles (MeOH); mp 136– 137 °C; [α]<sub>D</sub><sup>26</sup>: -60 (*c* 0.1, MeOH); UV (MeOH)  $\lambda_{max}$  (log  $\varepsilon$ ) 231 (3.90), 196 (3.59) nm; IR (KBr)  $\nu_{max}$  3446, 2927, 1726, 1646, 1235, 1027 cm<sup>-1</sup>; <sup>1</sup>H and <sup>13</sup>C NMR data, see Tables 1 and 2; positive-ion ESIMS: *m/z* 427 [M + Na]<sup>+</sup> (100); positive-ion HREIMS [M]<sup>+</sup> *m/z* 404.2194 (calcd for C<sub>23</sub>H<sub>32</sub>O<sub>6</sub>, 404.2199).

Isowikstroemin B (**2**)White amorphous powder;  $[\alpha]_D^{26}$ : -91 (*c* 0.1, MeOH); UV (MeOH)  $\lambda_{max}$  (log  $\varepsilon$ ) 231 (3.86), 195 (3.55) nm; IR (KBr)  $\nu_{max}$  3440, 2933, 1726, 1644, 1237, 1031 cm<sup>-1</sup>; <sup>1</sup>H and <sup>13</sup>C NMR data, see Tables 1 and 2; positive-ion ESIMS: *m/z* 413 [M + Na]<sup>+</sup> (100); positive-ion HREIMS [M]<sup>+</sup> *m/z* 390.2049 (calcd for C<sub>22</sub>H<sub>30</sub>O<sub>6</sub>, 390.2042).

Isowikstroemin C (**3**)White amorphous powder;  $[\alpha]_D^{26}$ : -51 (*c* 0.2, MeOH); UV (MeOH) λ<sub>max</sub> (log *ε*) 230 (3.91), 196 (3.61) nm; IR (KBr) ν<sub>max</sub> 3432, 2926, 1722, 1646, 1269, 1056 cm<sup>-1</sup>; <sup>1</sup>H and <sup>13</sup>C NMR data, see Tables 1 and 2; positive-ion ESIMS: *m/z* 385 [M + Na]<sup>+</sup> (100); positive-ion HREIMS [M]<sup>+</sup> *m/z* 362.2076 (calcd for C<sub>21</sub>H<sub>30</sub>O<sub>5</sub>, 362.2093).

Isowikstroemin D (**4**)White amorphous powder;  $[\alpha]_D^{26}$ : -68 (*c* 0.2, MeOH); UV (MeOH)  $\lambda_{max}$  (log  $\varepsilon$ ) 229 (3.86) nm; IR (KBr)  $\nu_{max}$  3418, 2945, 1727, 1650, 1256, 1094 cm<sup>-1</sup>; <sup>1</sup>H and <sup>13</sup>C NMR data, see Tables 1 and 2; positive-ion ESIMS: *m/z* 371 [M + Na]<sup>+</sup> (100); positive-ion HREIMS [M]<sup>+</sup> *m/z* 348.1938 (calcd for C<sub>20</sub>H<sub>28</sub>O<sub>5</sub>, 348.1937).

Isowikstroemin E (**5**)White amorphous powder;  $[α]_D^{25}$ : +4 (*c* 0.1, MeOH); UV (MeOH)  $λ_{max}$  (log ε) 203 (3.79) nm; IR (KBr)  $ν_{max}$  3441, 2928, 1719, 1659, 1242, 1029 cm<sup>-1</sup>; <sup>1</sup>H and <sup>13</sup>C NMR data, see Tables 1 and 2; positive-ion ESIMS: *m/z* 429 [M + Na]<sup>+</sup> (100); positive-ion HREIMS [M]<sup>+</sup> *m/z* 406.2353 (calcd for C<sub>23</sub>H<sub>34</sub>O<sub>6</sub>, 406.2355).

Isowikstroemin F (**6**)White amorphous powder;  $[\alpha]_D^{26}$ : -27 (*c* 0.1, MeOH); UV (MeOH) λ<sub>max</sub> (log ε) 204 (3.80) nm; IR (KBr)  $\nu_{max}$  3438, 2933, 1718, 1630, 1246, 1030 cm<sup>-1</sup>; <sup>1</sup>H and <sup>13</sup>C NMR data, see Tables 1 and 2; positive-ion ESIMS: *m/z* 415 [M + Na]<sup>+</sup> (100); positive-ion HREIMS [M]<sup>+</sup> *m/z* 392.2185 (calcd for C<sub>22</sub>H<sub>32</sub>O<sub>6</sub>, 392.2199).

Isowikstroemin G (7)White amorphous powder;  $[\alpha]_D^{26}$ : -31 (*c* 0.1, MeOH); UV (MeOH)  $\lambda_{max}$  (log  $\varepsilon$ ) 204 (3.86) nm; IR (KBr)

Download English Version:

## https://daneshyari.com/en/article/2538531

Download Persian Version:

https://daneshyari.com/article/2538531

Daneshyari.com