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a b s t r a c t

An electromechanical Reissner–Mindlin model is constructed for laminated piezoelectric plates using the
variational asymptotic method. This model is applicable to laminates without prescribed electric poten-
tial through the thickness. Taking advantage of the smallness of the plate thickness, we rigorously split
the original 3D piezoelectricity problem into a 1D through-the-thickness analysis and a 2D plate analysis,
and both are fully-coupled electromechanical analyses. Examples of single layer and multi-layer plates
have been used to demonstrate the accuracy and application of this model.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Considerable amount of research and investigation have been
done to study laminated piezoelectric plates. The exact solutions
of laminated piezoelectric plates can be obtained analytically for
a few cases of ideal material type, geometry, and boundary condi-
tions [1–3]. For general cases, we can use the three-dimensional
(3D) multiphysics finite element method (FEM) to find numerical
solutions [4]. However, it is labor intensive to prepare the 3D mul-
tiphysics FEM model for a laminated piezoelectric plate, especially
if it is composed of many anisotropic layers with different orienta-
tions. Moreover, the prohibitive computational cost of 3D FEM can
only be justified for detailed analyses and prevents its use in design
and overall simulation of realistic engineering systems involving
such components. Numerous two-dimensional (2D) plate models
have been constructed in order to simplify the analysis of piezo-
electric plates, which generally start from some assumptions for
the through-the-thickness distribution of the 3D field quantities.
According to the way the assumptions applied, piezoelectric plate
models can be classified as equivalent single-layer models [5–17] if
the assumptions are applied to the entire structure and layerwise
models [18–21] if the assumptions are applied to each layer. In
the past investigation, single-layer theory of mechanical fields is
usually combined with layerwise approximation of electric poten-
tial [22–25], and 2D finite element is incorporated in developing
these plate theories [22,23,26]. In addition, considerable efforts
have been dedicated to the study of vibration suppression, shape
control, and buckling enhancement, and optimization of composite
plates with embedded or surface bonded piezoelectric actuators/
sensors [27–29]. These models have two main disadvantages:

(1) the a priori assumptions which are natural extensions from iso-
tropic, homogeneous structures cannot be easily justified for
highly heterogeneous and anisotropic structures such as laminated
piezoelectric plates; (2) there is no rational way for the analyst to
determine the loss of accuracy and which refinement (i.e. single-
layer versus layerwise, first-order versus higher-order) should be
used for a reasonable tradeoff between accuracy and efficiency.

Extensive researches have been done on piezoelectric plates
with electroded face surfaces and interfaces between layers [30]
so that the electric potential can be prescribed at a certain point
through the thickness. However, it is also possible that no electric
potential is prescribed at any point through the thickness, say the
electrodes are coated on the lateral boundary of the plate. The re-
search works on this electrode arrangement are associated with
transducers and resonators, which oftentimes belong to the area
of electrical engineering or physics. It is noted that the lateral field
excitation can also be produced by placing two electrodes on the
same face surface of the plate [31–34], which might be one of
the reasons that study on the case of electroded lateral boundary
has not received much attention. Most of the investigations for this
type of loading have been devoted to the study on vibration modes,
depolarizing-field effect, electromechanical coupling coefficients,
and admittance [35–38]. Published works related to the mechanics
of piezoelectric composite plates with electroded lateral edges are
rare. In particular, static analysis of displacements, strains, and
stresses has not been found in the literature. Even for prescribed
electric load on the lateral boundary, the electric field is often spec-
ified as a constant instead of a field generated by prescribed elec-
tric potential along the electroded edges [39].

The focus of this paper is to construct a generalized Reissner–
Mindlin model with both electric and mechanical measures for
laminated piezoelectric plates without prescribed electric potential
through the thickness. The variational asymptotic method (VAM)
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[40] will be applied to mathematically split the coupled 3D
electromechanical analysis into a series of one-dimensional (1D)
electromechanical through-the-thickness analyses and 2D electro-
mechanical analyses over the reference plane. The coupled
through-the-thickness analyses calculate both the mechanical
warping and the electric warping, the meaning of which will be de-
fined later. The results of the coupled through-the-thickness anal-
yses are generalized 2D electric enthalpy, which can be
transformed into the form of a generalized Reissner–Mindlin mod-
el. The coupled through-the-thickness analyses can also provide a
set of recovery relations to reproduce 3D distribution of the elec-
tromechanical fields within the structure based on the results ob-
tained from the 2D electromechanical analysis. One of the major
applications of 2D plate models developed is the computation of
resonant frequencies of piezoelectric devices [41].

2. Three-dimensional formulation

The Hamilton’s extended principle for a piezoelectric composite
plate can be written asZ t2

t1

½dðK�HÞ þ dW�dt ¼ 0 ð1Þ

where t1 and t2 are arbitrary fixed times, K and H are the kinetic
energy and electric enthalpy, respectively, dW is the virtual work of
applied loads and electric charges (if exist). The bar is used to indi-
cate that the virtual work need not be the variations of functionals.

For piezoelectrics, the electric enthalpy can be expressed as

H ¼ 1
2

Z
V

ðCT : CE : C� 2E � e : C� ET � eC � EÞdV ð2Þ

where CE is the elastic tensor at constant electric field, C is the
strain tensor, e is the piezoelectric tensor, E is the electric field vec-
tor, eC is the dielectric tensor at constant strain field, and V is the
space occupied by the structure. Although we are focusing on plates
made of piezoelectrics, the present formulation is equally applica-
ble to smart structures made of other active materials characterized
by a constitutive model with the same mathematical structure.

As sketched in Fig. 1, a point in the plate can be described by its
Cartesian coordinates xi, where xa are two orthogonal lines in the
reference plane and x3 is the normal coordinate. (Here and
throughout the paper, Greek indices assume values 1 and 2 while
Latin indices assume 1, 2, and 3. Repeated indices are summed over
their range except where explicitly indicated.) Letting bi denote the

unit vector along xi for the undeformed plate, one can then de-
scribe the position of any material point in the undeformed config-
uration by its position vector r̂ from a fixed point O, such that

r̂ðx1; x2; x3Þ ¼ rðx1; x2Þ þ x3b3 ð3Þ

where r is the position vector from O to the point located by xa on
the reference plane. When the reference plane of the undeformed
plate coincides with its middle plane, we have

hr̂ðx1; x2; x3Þi ¼ hrðx1; x2Þ ð4Þ

where the angle-brackets denote the definite integral through the
thickness of the plate, denoted as h. The position vector of any
material point in the deformed plate R̂ can be represented as

R̂ðx1; x2; x3Þ ¼ Rðx1; x2Þ þ x3B3ðx1; x2Þ þwiðx1; x2; x3ÞBiðx1; x2Þ ð5Þ

where R is the position vector of the reference plane for the de-
formed plate, Bi is an orthonormal triad for the deformed configura-
tion, and wi are warping functions introduced to accommodate all
possible deformation other than those described by R and Bi. To en-
sure a unique expression for R̂ in terms of R, Bi, and wi, we need to
introduce six constraints. We can define R to be the average posi-
tion through the plate thickness, which implies that the warping
functions must satisfy the following three constraints

hwiðx1; x2; x3Þi ¼ 0 ð6Þ

Another two constraints can be specified by choosing B3 as the nor-
mal to the reference plane of the deformed plate. It should be noted
that this choice has nothing to do with the famous Kirchhoff
hypothesis, in which no local deformation of the transverse normal
is allowed. Here, we have accommodated all possible deformation
using the warping functions.

Because Ba can freely rotate around B3, we can introduce the
last constraint as

B1 � R;2 ¼ B2 � R;1 ð7Þ

Based on the concept of decomposition of rotation tensor [42], we
can obtain 3D strains valid for small local rotations using

Cij ¼
1
2
ðFij þ FjiÞ � dij ð8Þ

where dij is the Kronecker symbol, and Fij is the mixed-basis compo-
nent of the deformation gradient tensor such that

Fij ¼ Bi � Gkgk � bj ð9Þ

with Gk as the covariant base vectors of the deformed configuration
and gk as the contravariant base vectors of the undeformed config-
uration. The 2D generalized strains eab and Kab can be defined as

R;a ¼ Ba þ eabBb

Bi;a ¼ ð�KabBb � B3 þ Ka3B3Þ � Bi
ð10Þ

Using Eq. (8) along with Eqs. (9), (10), (5) and (3), we can express
the 3D strain field Cij in terms of eab, Kab, and wi. For geometrically
nonlinear analysis, we can assume that the strains are small com-
pared to unity and warpings are of the order of strain or smaller.
Neglecting higher-order terms, one can express the 3D strain field
as

Ce ¼ eþ x3jþ I1wk;1 þ I2wk;2
2Cs ¼ w0k þ e1w3;1 þ e2w3;2

Ct ¼ w03

ð11Þ

where ðÞ0 ¼ oðÞ
ox3

, ðÞk ¼ bðÞ1ðÞ2c
T

Ce ¼ bC11 2C12 C22cT 2Cs ¼ b2C13 2C23cT Ct ¼ C33

e ¼ be11 2e12 e22cT j ¼ bK11 K12 þ K21 K22cT
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Fig. 1. Schematic of plate deformation.
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