

Contents lists available at ScienceDirect

Fitoterapia

journal homepage: www.elsevier.com/locate/fitote

Ursane triterpenoids from the bark of Terminalia arjuna

Wei Wang a, Zulfiqar Ali a, Yunheng Shen a, Xing-Cong Li a, Ikhlas A. Khan a,b,*

- ^a National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
- ^b Department of Pharmacognosy, School of Pharmacy, University of Mississippi, University, MS 38677, USA

ARTICLE INFO

Article history:
Received 3 September 2009
Accepted in revised form 5 January 2010
Available online 15 January 2010

Keywords: Combretaceae Terminalia arjuna Ursane triterpenoid Triterpene glucosyl ester

ABSTRACT

Five ursane type triterpene glucosyl esters including a new one, 2α , 3β -dihydroxyurs-12,18-dien-28-oic acid 28-O- β -D-glucopyranosyl ester (1) were isolated from the bark of *Terminalia arjuna*, along with two known phenolic compounds. It is the first report of ursane type triterpenoids from this species.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Terminalia arjuna Wight & Arn (Combretaceae) is a 20–30 m tall tree distributed in India, Burma, and Sri Lanka. The bark of *T. arjuna* is a famous Indian folk medicinal plant used as a cardio-tonic in heart failure, ischaemic cardiomyopathy, atherosclerosis and myocardium necrosis [1–5]. Also, it is an essential ingredient of many Ayurvedic preparations which are sold as cardio-tonics [6]. It was reported that several species of *Terminalia* have been used in traditional treatment of cancer [7]. Previous phytochemical investigations showed triterpenoids, tannins and flavonoids were isolated from the bark of *T. arjuna* [8]. Many oleanane type triterpenoids have been reported from the title plant, some of which possess antitumoral, antioxidant, antiallergic, antiasthmatic, antifeedant and cardioprotective activities [9–13].

In continuing to search for new chemical and bio-markers from the medicinal plant T. arjuna for the quality control study of the related dietary supplements, one new ursane triterpene glucosyl ester, 2α , 3β -dihydroxyurs-12,18-dien-28-oic acid 28-O-

 $\beta\text{-D-glucopyranosyl}$ ester (1) and four known ursane triterpene glycosyl esters (Fig. 1), namely, $2\alpha,3\beta,23\text{-trihydroxyurs-}12,18\text{-dien-}28\text{-oic}$ acid $28\text{-}O\text{-}\beta\text{-D-glucopyranosyl}$ ester (2) [14], quadranoside VIII (3) [15], kajiichigoside F1 (4) and $2\alpha,3\beta,23\text{-trihydroxyurs-}12,19\text{-dien-}28\text{-oic}$ acid $28\text{-}O\text{-}\beta\text{-D-glucopyranosyl}$ ester (5) [14,16], as well as two known phenolic compounds, 3-O-methylellagic acid 4′-O- $\alpha\text{-L-rhamnopyranoside}$ and (—)-epicatechin were isolated [17,18]. Herein we report the isolation and structure elucidation of the new metabolite. Its structure was identified on the basis of extensive NMR experiments .

2. Experimental

2.1. General

Optical rotation: Rudolph Research AutoPol IV. UV: Hewlett–Packard 8453. IR: Bruker Tensor 27 FT-IR and MIRacle ATRFT-IR. HRESIMS: Agilent Series 1100 SL. NMR spectra: American Varian Mercury plus 400 (^1H 400 MHz, ^{13}C 100 MHz). HPLC: Waters LC Module I. HPLC column: Phenomenex Gemini C18 5 μ ODS column (10×250 mm).

2.2. Plant material

The bark of *T. arjuna* Wight & Arn. was purchased from Garry & Sun (Reno, Nevada, USA), and was authenticated by

^{*} Corresponding author. National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA. Tel.: +1 662 915 7821; fax: +1 662 915 7989. E-mail address: ikhan@olemiss.edu (I.A. Khan).

Fig. 1. Structures of 1-5.

Dr. Vaishali C. Joshi (University of Mississippi). A voucher specimen (#3799) was deposited at the National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, USA.

2.3. Extraction and isolation

The air-dried and powdered bark of T. arjuna (2 kg) was extracted by sonicating with MeOH (4×2 L) at room temperature for 2 h. The pooled MeOH solution was evaporated in vacuo to give a residue (645 g). The MeOH extract was suspended in H₂O (1.5 L) and then partitioned with hexanes $(3\times4\,L)$, Et₂O $(3\times4\,L)$ and EtOAc $(3\times4\,L)$. The EtOAc layer afforded a residue (11 g), which was separated into 11 fractions by column chromatography (CC) on silica gel with a gradient elution of CHCl₃-MeOH (20:1-1:1). Fr. 7 was subjected to CC over reversed-phase C18 silica and eluted with MeOH/H2O (2:3, v/v) to give (-)-epicatechin (42.5 mg). Fr. 9 was separated by reversed-phase C18 silica gel CC eluted with MeOH/ H_2O (3:7, v/v) and further purified by semipreparative HPLC with MeCN/H₂O (33:67) as mobile phase (flow rate 6.0 mL/min) to afford 1 (5.2 mg), 4 (26.2 mg) and 3-0methylellagic acid 4'-0- α -L-rhamnopyranoside (21.4 mg). Fr. 10 was treated in a similar manner to that of Fr. 9 to yield 2 (14.4 mg) and 5 (7.7 mg). Fr. 11 was subjected to a reversedphase C18 silica gel column eluted with MeOH/H₂O (2:3, v/v) and purified by semipreparative HPLC with MeOH/ H_2O (64:36) as mobile phase (flow rate 4.0 mL/min) to yield **3** (5.8 mg).

2α,3β-dihydroxyurs-12,18-dien-28-oic acid 28-O-β-D-glucopyranosyl ester (1): colorless gum; [α] D^{20} : +59.2 (c 0.3, MeOH); UV, $\lambda_{\rm max}$ (MeOH) nm (log ε): 250 (3.60) nm; IR (KBr), $\nu_{\rm max}$ cm $^{-1}$: 3386, 2932, 2872, 1714, 1453, 1368, 1225, 1175, 1071, and 892; HR-ESI-MS m/z 655.3827 [M+Na] $^+$ (calcd for $C_{36}H_{56}O_9Na$, 655.3822); For 1H and ^{13}C NMR data: see Table 1.

Acid hydrolysis of **1** and determination of D-glucose were carried out according to the method reported previously [19].

3. Results and discussion

Compound **1** was isolated as a colorless gum. The molecular formula of $C_{36}H_{56}O_9$ (positive mode m/z=655.3827 [M + Na]⁺ calcd. for $C_{36}H_{56}O_9$ Na: 655.3822) was established by HR-ESI-MS and ^{13}C NMR spectra. The IR spectrum showed the bands at 3386 and 1714 cm⁻¹ corresponding to the absorptions of the hydroxy and the carbonyl groups, respectively. The ^{1}H NMR spectrum (Table 1) showed six tertiary methyl [δ_H 1.04, 1.09 (×2), 1.18, 1.28 and 1.79], one secondary methyl (δ_H 1.03, d, J=4.0 Hz) and the anomeric proton of a β -glucopyranosyl unit ($\delta_{H-1'}$ 6.35, d, J=8.0 Hz). The ^{13}C NMR and DEPT (Table 1) spectra indicated the presence of 36 carbons, including one carboxyl (δ_C 175.1), four olefinic [δ_C 139.1 (s), 136.4 (s), 134.1 (s) and 126.9 (d)] and two oxymethine (δ_C 84.1 and 69.0) carbons in the low-field region and seven methyl, eight methylene, three

Download English Version:

https://daneshyari.com/en/article/2539212

Download Persian Version:

https://daneshyari.com/article/2539212

<u>Daneshyari.com</u>