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Abstract

Free vibration analysis of composite cylindrical shells with different boundary conditions is presented in this paper using differ-
ential quadrature method (DQM). Equations of motion are derived based on first order shear deformation theory taking the effects
of shear deformation and rotary inertia terms into account. By applying the differential quadrature formulation and the required
modified relationships for implementing the different boundary conditions, equations of motion of a circular cylindrical shell are
transformed into a set of algebraic equations. By solving this algebraic system natural frequencies of circular cylindrical shells made
of fibrous composite materials with different fibre angles are evaluated. The results thus obtained are then compared with some avail-
able results and a good agreement is observed. In all the cases studied here efficiency, ease and usefulness of the DQM are well
illustrated.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

High structural performance of mechanical behavior of
fibrous composite structures is of a very keen interest in
modern engineering. This is due to the extensive use of
such structures in various branches of advanced technolog-
ical and engineering applications. Dynamic analysis of
composite cylindrical shells has attracted much attention
of researchers e.g. [1–4]. A quick and accurate prediction
of dynamic behavior of such cylindrical shells is of very
much interest to designers and experimentalists alike. This
normally requires a comprehensive development of a
mathematical model. Due to the complexity of engineering
characteristics of composite shell type structures analytical
solutions cannot be obtained in a straight forward manner.
The differential quadrature method (DQM) is an efficient

numerical technique which transforms governing equa-
tions of dynamic equilibrium to a matrix form by using
weighted matrices. The DQM requires a small amount of
computer capacity and provides accurate results. The
DQM was successfully employed in various structural
problems [5–8]. In the present study a solution to the free
vibration problem of laminated fibrous composite cylindri-
cal shells is presented. The governing equations of dynamic
equilibrium are derived based on first order shear deforma-
tion theory.

These are then solved by using the differential quadra-
ture method termed as DQM in short. Two types of
boundary conditions (simply supported and clamped free
ends) for a cylindrical shell are considered in the illustrative
examples given in this paper. The results from the present
DQM solution are compared with some available theoret-
ical as well as experimental results. It is observed that there
is a very good agreement between the results from the pres-
ent method and the corresponding ones found before by
various researchers.
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2. Theoretical analysis

2.1. Differential quadrature method (DQM)

The differential quadrature method is a numerical tech-
nique which approximates the spatial derivative of a func-
tion at a particular sampling point as a weighted linear sum
of the function values at all sampling points chosen in a
specified direction. Thus the partial derivatives of a func-
tion f(xi,hj) at a point (xi,hj) are expressed as

orf ðxi; hjÞ
oxr

����
x¼xi

¼
XN

j¼1

EðrÞij f ðxj; hjÞ ð1Þ

where EðrÞij are the respective weighting coefficients and N is
the number of grid points and f can be taken as u, v, w, bx

and bh. In order to have no constraint on the number of
grid points used for the approximation and the weighting
coefficients, the Lagrange interpolated polynomials fi(x)
are expressed by

fiðxÞ ¼
MðxÞ

ðx� xiÞMðxiÞ;x
ð2Þ

where i = 1,2, . . .,N and MðxÞ ¼
QN

j¼1ðx� xiÞ and a comma
before a subscript denotes differentiation with respect to
that script.

By substituting Eq. (2) in Eq. (1) one can find
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and
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where i, j = 1,2, . . .,N.
A recurrence relation for the rth order weighting coeffi-

cients EðrÞij was derived in [8] and is given by
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where i, j = 1,2, . . .,N.
The grid points are chosen according to Ref. [9].

2.2. Governing equations

Consider a laminated circular cylindrical shell as shown
in Fig. 1 for the purpose of mathematical modeling formu-
lation. The formulation is based on Love�s thin shell theory
equations in terms of circumferential and axial coordinates
h and x, respectively. The governing equations of motion
for free vibration and the stress–strain relations including
the transverse shear and rotary inertia terms are well
known and are taken as proved in [10] and are presented
in the following form:

aNxx;x þ Nxh;h � Qxx ¼ a R1€uþ R2
€bx

� �
aNxh;x þ N hh;h þ Qhh ¼ a R1€vþ R2

€bh

� �
aQxx;x � Qhh;h � N hh ¼ a R1 €wð Þ

aMxx;x þMxh;h � aQxx ¼ a R2€uþ R3
€bx

� �
aMxh;x þMhh;h þ aQhh ¼ a R2€vþ R3

€bh

� �
ð7Þ

Fig. 1. Cross-sectional view of structure of laminated cylindrical shell.

Nomenclature

a shell radius
Ck

ij elastic moduli of the kth laminate
Aij, Bij, Dij shell stiffness
Eij DQM weighting coefficients
Aij thickness of the kth layer
Kxx, Khh composite correction factors
L shell length
m axial wave number
n circumferential wave number
n 0 number of shell layers
Mxx, Mhh, Mxh moment resultants

Nxx, Nhh, Nxh stress resultants
Qxx, Qhh transverse shear stress resultants
R1, R2, R3 inertia terms
u, v, w in plane and radial displacements
bx, bh axial and circumferential rotation, respectively
cxz, chz shear strain components
u(x), v(x), w(x), bx(x), bh(x) axial dependence terms in

modal forms
x circular natural frequency
X natural frequency parameter (�ax2)
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