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Abstract

A state space method for two-dimensional problems of orthotropic materials is proposed which provides an alternative method to
investigate the mechanical behavior of homogeneous and laminated beams. The method is illustrated for a homogenous/laminated beam
subjected to time-dependent transverse loads. A particular solution for a straight-crested wave propagating along an infinite beam is
obtained. The bending, buckling and free vibrations of composite beams are also studied. Numerical results are presented and compared
with those available in the literature.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The two-dimensional problem, which includes plane
stress and strain problems, is very important in the field
of elasticity. There are many practical problems of this
kind in mechanical and civil engineering, such as a beam
with rectangular section [1]. For thin isotropic and homo-
geneous beams, the classical beam theory and Timoshenko
beam theory (the first-order shear theory) generally can
give an excellent solution with negligible error [2].

Nowadays, much attention has been attracted by lami-
nated composite beams because they have wide applica-
tions due to their distinct advantage over the
conventional homogeneous beams. Because transverse
shear deformation plays an important role in anisotropic
or laminated beams, the classical beam theory based on
Euler–Bernoulli hypothesis will lead to inaccurate or even
erroneous results. Although Timoshenko beam theory
takes into account the effects of transverse shear deforma-
tion and rotatory inertia, it is difficult to determine the

required shear correction factors for arbitrary laminated
beams. It has been shown that both the classical and
first-order shear deformation theories are inadequate to
predict the accurate solutions of laminated composite
beams. Hence, various higher-order shear theories have
been developed [3–6]. Karama et al. [7,8] presented an
investigation of laminated composite beams by introducing
an exponential function as a shear stress function. Some
finite element formulations for laminated beams have also
been established based on various hypotheses of displace-
ments [9–13]. Recently, Chen et al. [14,15] proposed an
interesting semi-analytical method by combining the differ-
ential quadrature method with the state space method and
investigated the free vibration of cross-ply laminated
beams and laminated plates in cylindrical bending [16].
They also successfully applied the method to generally lam-
inated composite beams and plates [17–19].

This paper uses the state space method (also known as
the method of initial functions) to study the two-dimen-
sional problems of orthotropic materials. It should be
noted that Das and Setlur [20] investigated two-dimen-
sional elastodynamic problems of isotropic materials and
obtained some interesting results such as an exact govern-
ing equation of the transverse vibration of a deep beam
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and a layered beam in plane stress by employing a similar
method. However, as will be shown in this paper, the gen-
eralization of their method to orthotropic materials is not
straightforward. The governing equation of a homogenous
or laminated beam subjected to time-dependent transverse
loads is derived. A particular solution of wave propagation
in an infinite beam is obtained. The bending, buckling and
free vibrations of homogeneous and composite beams are
also studied. This investigation should provide an alterna-
tive method to derive approximate beam theories or
directly give the exact solutions.

2. Mathematical formulations

In absence of body forces, the two-dimensional dynamic
equilibrium equations of an elastic body with an initial
strain e0

x due to the initial stress r0
x in x-direction are
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where u and v are displacements in x- and y-directions,
respectively, rx, ry and sxy are stresses, and q and t denote
density and time, respectively. For the plane stress problem
of orthotropic materials, the stress–displacement relations
are
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where s11, s12, s22 and s66 are elastic compliances. Introduce
the following notations

U ¼ u=H ; V ¼ v=H ; Y ¼ Sry ; X ¼ Ssxy

fag ¼ ½U Y V X �T; b ¼ o=of; a ¼ Ro=og;

n2 ¼ qSH 2o
2=ot2 þ m2e

0
xH 2o

2=ox2;

f ¼ y=H ; g ¼ x=L; R ¼ H=L

ð3Þ

and

m1 ¼ s12=s11; m2 ¼ S=s11;

m3 ¼ ðs11s22 � s2
12Þ=ðs11SÞ; m4 ¼ s66=S ð4Þ

where L and H denote two length parameters which are
prominent dimensions of the problem, and S is another
parameter which has the same dimension as material com-
pliance. Eqs. (1) and (2) can be rewritten as

bfag ¼ ½M�fag
rx ¼ m2aU � m1Y

�
ð5Þ

where

½M� ¼
0 A

B 0

� �
; A ¼

�a m4

n2 �a

� �
;

B ¼
m1a m3

n2 � m2a2 m1a

� �
ð6Þ

Note that the differential operators a, b and n follow the
usual rules of algebra [20].

The solution of the first one of Eq. (5) is

faðfÞg ¼ e½M�ffað0Þg ð7Þ
where a(0) denotes a(f) at f = 0, the initial unknowns on
the plane f = 0. Using the Cayley–Hamilton theorem,
one has

e½M�f ¼ a0½I4� þ a1½M� þ a2½M�2 þ a3½M�3 ð8Þ
where [In] is an identity matrix of n · n and the parameters
ai (i = 0,1,2,3) are determined by

ec1f ¼ a0 þ a1c1 þ a2c2
1 þ a3c3

1

ec2f ¼ a0 þ a1c2 þ a2c2
2 þ a3c3

2

ec3f ¼ a0 þ a1c3 þ a2c2
3 þ a3c3

3

ec4f ¼ a0 þ a1c4 þ a2c2
4 þ a3c3

4
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where ci (i = 1,2,3,4) are the distinct eigenvalues of the
operator matrix [M]. If the material is isotropic, these
eigenvalues can be expressed by the operators a and n
explicitly as well as ai (i = 0,1,2,3) [20]. Thus, e[M]f is a ma-
trix whose elements also can be expressed by the operators
a and n explicitly. Hence, Eq. (7) is an exact governing dif-
ferential equation set of the plane problem.

Unfortunately, the eigenvalues of the operator matrix
[M] cannot be obtained explicitly for anisotropic materials.
However, by taking the advantage of the characteristic of
the matrix [M] and the relations between the roots and
coefficients of a quadratic equation with one unknown,
all the elements of e[M]f can be rendered by the differential
operators a and n for orthotropic materials, as will be
shown below.

Noticing Eq. (6), one has

½M�2 ¼
0 A

B 0

� �
0 A

B 0

� �
¼

C 0

0 D

� �
ð10Þ

where

½C� ¼ ½A�½B� ¼ m4n
2 � ðm1 þ m2m4Þa2 ðm1m4 � m3Þa

ðm1 � 1Þn2aþ m2a3 m3n
2 � m1a2

" #

ð11Þ
½D� ¼ ½B�½A�

¼ m3n
2 � m1a2 ðm1m4 � m3Þa

ðm1 � 1Þn2aþ m2a3 m4n
2 � ðm1 þ m2m4Þa2

" #
ð12Þ

Obviously, all elements of matrix [C] are the same as the
ones of matrix [D] except from the positions of the diagonal
elements. Hence one has

detð½C� � k½I2�Þ ¼ detð½D� � k½I2Þ ð13Þ
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