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a b s t r a c t

Rocks are naturally filled with cracks and pores that are saturated with one or more fluid phases. Many
problems in rock mechanics, petroleum engineering, geophysics, etc. deal with cracks and discontinuities
in rock formations. These problems should consider effects of a porous medium. Displacement disconti-
nuity method (DDM) as an indirect boundary element method is particularly ideal for problems involving
fractures and discontinuities. However, the DDM in its original form is limited to elastic problems. The
paper uses a fundamental solution of a point displacement discontinuity in poroelastic medium to obtain
the solution for a poroelastic DDM. Then it introduces a numerical formulation and implementation for
the poroelastic DDM in a code named CEP-DDM (Constant Element Poroelastic DDM). The accuracy and
validity of the proposed solution and the newly developed code are verified by two analytical solutions,
another numerical solution, and some field measurements. These results showed good agreement
between CEP-DDM and other methods’ results. The verifications prove the accuracy and applicability of
the proposed numerical model in a wide range of real-world problems.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Generally, subsurface rocks include discontinuities (such as
cracks and faults) and pores where fluids of any phase may exist.
These discontinuities and pores may be saturated with water, air,
oil, etc. These fluids can significantly affect the stress (e.g. causing
effective stresses due to pore pressure effect) and displacement
fields in a rock mass. Pore pressures can cause elastic deformation
in the rock which results in the flow of pore fluid through the rock
due to the pore pressure gradients, changes in stresses due to tec-
tonic forces, boreholes drilling, etc. [1].This results in a strong cou-
ple of the mechanical and hydrological behavior of rocks. The
coupled hydromechanical rocks behavior should be studied in
poroelasticity framework.

The problem of a pressurized fracture in a porous medium
arises in many situations in geomechanics such as hydraulic frac-
turing [2–6], In-situ stress measurement [7–9], and geothermal
energy extraction process [10–13]. Fractures are the main flow
channels in a poroelastic medium. During the last decades, many
papers have focused on the derivation of a mathematical formula-
tion or analytical solution for the hydraulic fracture problem in a
porous rock [14–20].

Change in the fluid pressure induces matrix deformation and
stress change, matrix deformation in turn induces fluid volume
change and fluid pressure change. The change in pore pressure
and stress at any point affects the fracture and induces fracture
deformation. In order to accurately model these coupled interac-
tions, all these couplings should be implicitly considered. The dis-
placement discontinuity method (DDM) is particularly ideal for
problems involving fractures and discontinuities because the fun-
damental solution contains a displacement jump. Although the
DDM in its original form [21] and its higher order extensions
[22–24] gives very accurate results in the solution of boundary
value problems (BVPs) but is limited to elastic problems. Therefore,
the DDM has been coupled with other numerical methods such as
FDM and FEM to investigate poroelastic effects of fractures. For
example, Ji used the DDM to simulate crack propagation in a poroe-
lastic environment and coupled it with the FDM to simulate fluid
interaction [25]. Yin et al. coupled DDM and FEM to consider poroe-
lastic effects in reservoirs [26,27].

However, the DDM has not been completely formulated and
extended to poroelasticity as a stand-alone numerical method.
The present paper derives the fundamental solutions for poroelas-
tic DDM in an implicit form (from a mathematical point of view).
Then introduces numerical formulation and implementation of
the DDM in a poroelastic rock. A sophisticated computer code
named CEP-DDM (constant element poroelastic displacement dis-
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continuity method) is developed to solve the general poroelastic
boundary value problems. The code is well verified with the known
analytical solution of the problem of suddenly pressurized crack in
an infinite plane cited in the literature [21,22] as well as a problem
with finite boundaries [28]. Also, the results are compared with
another numerical method available in the literature[29]. The
newly developed formulation and code provide a complete poroe-
lastic analysis without the need to couple the DDM with any other
numerical method and dealing with the problems involving trans-
lating data from one method to another.

2. Poroelasticity

The linear, isotropic poroelasticity theory was pioneered by Biot
[30] for modeling fluid-saturated solids response and was further
extended by others [31–34]. Poroelasticity considers solid and fluid
parts for geomaterials. The original formulation of Biot is consid-
ered in this research. This formulation mainly consists of basic
dynamic parameters of total stress rij and pore pressure p along
with their corresponding quantities, solid strain eij ¼ ðui;j þ uj;iÞ=2
and variation of fluid volume per unit reference f. A consistent
set of parameters for linear isotropic theory are shear modulus G,
drained and undrained Poisson ratios which are respectively,
m ¼ ð3K � 2GÞ=2ð3K þ GÞ; mu ¼ ð3Ku � 2GÞ=2ð3Ku þ GÞ, drained
and undrained bulk moduli K and Ku, Skempton’s pore pressure
coefficient B (ratio of induced pore pressure to variation of con-
fined pressure in undrained conditions) and permeability coeffi-
cient j ¼ k=l [30]. Governing equations of linear isotropic
poroelasticity consists of the following:

� Constitutive equations:

rij ¼ 2Geij þ 2Gm
1� 2m

dije� adijp ð1Þ

p ¼ �2GBð1þ muÞ
3ð1� 2muÞ eþ 2GB2ð1� 2mÞð1þ muÞ2

9ðmu � mÞð1� 2muÞ f ð2Þ

� Static local stress equilibrium equation

rij;j ¼ �Fi ð3Þ
� Darcy’s law

qi ¼ �jðp;i � f iÞ ð4Þ

Darcy’s law controls fluid flow in poroelastic rocks. Based on
Darcy’s law, flux field qi is irrotational due to the fact that it is
derived from the gradient of a continuous field. Considering the
law of conservation of mass for a compressible fluid the following
equation for fluid continuity may be obtained.

@f
@t

þ qi;i ¼ c ð5Þ

where in the above equations, Fi ¼ qgi, q ¼ ð1� nÞqs þuqf ; f i ¼
qf gi and a is Biot coefficient of effective stress which is:

a ¼ 3 mu � mð Þ
B 1� 2mð Þ 1þ muð Þ ð6Þ

The foregoing equations can be combined to obtain a set of field
equations in terms of displacement and fluid content variation.
Combining Eqs. (1)–(3) yields an elasticity equation with a fluid
coupling term

Gr2ui þ G
1� 2mu

e;i � 2GBð1þ muÞ
3ð1� 2muÞ f;i ¼ �Fi ð7Þ

Combining Eqs. (2), (4) and (5) and using Eq. (7) gives the fol-
lowing diffusion equation.

@f
@t

� cr2f ¼ kBð1þ muÞ
3ð1� muÞ Fi;i � kfi;i þ c ð8Þ

where c is a generalized consolidation coefficient equal to [32]

c ¼ 2kB2Gð1� mÞð1þ muÞ2
9ð1� muÞðmu � mÞ ð9Þ

Nomenclature

Fi bulk body force (N)
gi gravity component in i direction (m/s2)
f variation of fluid content (kg/m3)
q bulk density (kg/m3)
qs fluid density (kg/m3)
qf solid density (kg/m3)
n porosity
qi specific discharge
f i fluid body force (N)
c fluid injection rate (m3/s)
a Biot coefficient of effective stress
rij total stress (Pa)
p pore pressure (Pa)
eij solid strain
G shear modulus (Pa)
mu undrained Poisson ratio
m drained Poisson ratio
K drained bulk modulus (Pa)
Ku undrained bulk modulus (Pa)
B Skempton’s pore pressure coefficient
j permeability coefficient
k intrinsic permeability (m2)
l fluid dynamic viscosity (m2/s)

c generalized consolidation coefficient (m2/s)
ðuijÞ0 time-independent displacement (m)
ðrijkÞ0 time-independent stress (Pa)

ðpiÞ0 time-independent pore pressure (Pa)
ðqijÞ0 time-independent flux (m3/s)
Duij time-dependent displacement (m)
Drijk time-dependent stress (Pa)
Dpi time-dependent pore pressure (Pa)
Dqi time-dependent flux
Ds shear displacement discontinuity
Dn normal displacement discontinuity
Df flux discontinuity
d dirac delta
i, j, k, l indices varying from 1 to 2
�x; �y; n; s local coordinates
m number of elements
h number of time steps
Dt time-step

Ans

ij
; . . . boundary influence coefficients

x number of current time step
b angle between two different local axes
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