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a b s t r a c t

This paper aims to develop an efficient geotechnical reliability-based design (RBD) approach using Monte
Carlo simulation (MCS). The proposed approach combines a recently developed MCS-based RBD
approach, namely expanded RBD approach, with an advanced MCS method called ‘‘Subset Simulation
(SS)” to improve the computation efficiency at small probability levels that are often concerned in
geotechnical design practice. To facilitate the integration of SS and expanded RBD, a generalized surro-
gate response f is proposed to define the driving variable, which is a key parameter in SS, for expanded
RBD of geotechnical structures (e.g., soil retaining structures and foundations). With the aid of the pro-
posed surrogate response, failure probabilities of all the possible designs in a prescribed design space
are calculated from a single run of SS. Equations are derived for integration of the surrogate response-
aided SS and expanded RBD, and are illustrated using an embedded sheet pile wall design example
and two drilled shaft design examples. Results show that the proposed approach provides reasonable
estimates of failure probabilities of different designs using a single run of the surrogate response-aided
SS, and significantly improves the computational efficiency at small probabilities levels in comparison
with direct MCS-based expanded RBD. The surrogate response-aided SS is able to, simultaneously,
approach the failure domains of all the possible designs in the design space by a single run of simulation
and to generate more complete design information, which subsequently yields feasible designs with a
wide range of combinations of design parameters. This is mainly attributed to the strong correlation
between the surrogate response and target response (e.g., factor of safety) of different designs concerned
in geotechnical RBD.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the past few decades, several geotechnical reliability-based
design (RBD) codes/methodologies have been developed around
the world, such as the load and resistance factor design codes
(e.g., [11,25,15] or multiple resistance factor design methodology
[27,28] in North America, Eurocode 7 (e.g.,[24,12] in Europe, and
the Geo-Code 21 (e.g., [18,17] in Japan. These codes/methodologies
are usually calibrated for a pre-defined value of target reliability
index bΤ (or target failure probability pT) through some calibration
processes based on some assumptions and/or simplifications of
uncertainty characterization and deterministic modeling, and pro-
vide tabulated load and/or resistance factors (or partial factors) for
geotechnical designs. These calibration processes are, however,
almost ‘‘invisible” to geotechnical practitioners in the sense that

the assumptions and/or simplifications adopted in calibration pro-
cesses are unknown to them. This may lead to potential misuse of
the load and resistance factors because they are only valid for the
assumptions and simplifications adopted in the calibration
process.

To address the problem, a Monte Carlo Simulation (MCS)-based
RBD approach, namely expanded RBD approach, for foundations is
recently developed by Wang et al. [37] and Wang [35]. The
expanded RBD approach makes use of direct MCS in design, and
its entire design process (including uncertainty characterization
and deterministic modeling) is transparent to design engineers
so that they can make assumptions and/or simplifications deemed
appropriate for a particular project during the design. Although
direct MCS used in expanded RBD has the advantage of conceptual
and mathematical simplicity, it suffers from a lack of efficiency and
resolution at small probability levels [10], which are of great inter-
est in design practice. This necessitates a large number (e.g., more
than 1 million) of MCS samples for expanded RBD and may require
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extensive computational efforts, which hampers the application of
the approach in design practice.

This paper aims to develop an efficient geotechnical RBD
approach that combines the expanded RBD approach with an
advanced MCS method called ‘‘Subset Simulation (SS)”. SS was
originally developed by Au and Beck [5] in structural engineering,
and has been successfully applied to perform reliability analyses in
geotechnical engineering (e.g., [39,38,30,2,19]) and other disci-
plines (e.g., nuclear engineering [41,42,20,13]). However, it should
be noted that the reliability analysis aims to estimate the failure
probability Pf of a system with pre-defined design parameters
(e.g., an existing geotechnical structure). This is the inverse of
RBD, which aims to determine an optimal design of a system
(e.g., geotechnical structures) that satisfies a series of pre-defined
performance requirements (e.g., pT). Research that directly uses
SS in geotechnical RBD is relatively limited except for a few recent
studies [40,34,33]. Wang and Cao [40] showed that the implemen-
tation of SS in geotechnical RBD is not a trivial task and relies on
the choice of the system response used to define the driving vari-
able that is a key parameter in SS. Although Wang and Cao [40]
suggested a heuristic method to choose the system response in
SS for foundation designs, how to choose a proper system response
in SS for general purposes of geotechnical RBD remains an open
question and has not been systematically explored.

This paper proposes a generalized surrogate response to aid in
the application of SS in expanded RBD and systemically explores
its performance in geotechnical RBD. The proposed surrogate
response is general and applicable to various geotechnical designs
(e.g., soil retaining structures and foundations). With the aid of the
proposed surrogate response, the Pf values of all the possible
designs in a prescribed design space are calculated from a single
run of SS for expanded RBD, avoiding repeatedly performing SS
for each design. The paper starts with a brief introduction of
expanded RBD approach and SS, followed by discussion on the dif-
ficulty in defining the driving variable of SS for expanded RBD and
formulation of the generalized surrogate response for SS-based
expanded RBD. Then, equations are derived for integration of the
surrogate response-aided SS with expanded RBD and evaluation
of the correlation coefficient between the surrogate response and
the system response of intrinsic interest (i.e., target response) in
design. Finally, the proposed approach is illustrated by three
design examples.

2. Expanded reliability-based design (expanded RBD) of
geotechnical structures

In the context of expanded RBD, design parameters hD of
geotechnical structures are artificially considered as independent
discrete random variables with uniformly distributed probability
mass function PðhDÞ (e.g., [35,37]. Herein, the design parameters
hD = {hD;i, i = 1, 2, . . . , nD} are referred to nD geometric dimensions
of geotechnical structures needed to be determined in designs,
such as the embedded depth Dspw of the sheet pile wall, and the
length D and diameter B of drilled shafts. They shall be distin-
guished from the uncertain system parameters hS = {hS;j,
j = 1, 2, . . . , nS} (e.g., uncertain soil parameters) defined in this
study, which are nS uncertain parameters involved in geotechnical
reliability analyses for a given design (i.e., a given combination of
hD). In expanded RBD, the design process of geotechnical structures
is revised as a process of evaluating conditional failure probabili-
ties PðFjhDÞ corresponding to all the possible designs with various
combinations of hD by a single run of direct MCS and comparing
them with pT. Feasible designs are those with PðFjhDÞ 6 pT. Using
Bayes’ Theorem, PðFjhDÞ is calculated as [37,35]

PðFjhDÞ ¼ PðhDjFÞPf =PðhDÞ ð1Þ
where PðhDjFÞ = conditional joint probability of hD given failure;
PðhDÞ ¼ 1

QnD
i¼1kD;i

�
, in which kD,i is the number of possible values

of hD;i. In Eq. (1), PðhDÞ is known before the calculation and reflects
design decisions of geotechnical practitioners. Meanwhile, PðhDjFÞ
and Pf are also needed for evaluating PðFjhDÞ, and they are calculated
by a single run of SS with the aid of a generalized surrogate
response in this study, as discussed in the following two sections.

3. Surrogate response-aided subset simulation for expanded
RBD

3.1. Algorithm of SS

SS is an advanced MCS method that uses conditional probability
and Markov Chain Monte Carlo (MCMC) method to efficiently com-
pute small tail probability [5,6,9]. It expresses a rare event E with a
small probability as a sequence of intermediate events {E1, E2, . . . ,
Em} with larger conditional probability and employs specially
designed Markov chains to generate conditional samples of these
intermediate events until the target sample domain is achieved.
Let Y be the output parameter that is of interest and increasesmono-
tonically, and define the rare event E as E = {Y > y}, where y is a given
threshold value for determining whether E occurs. Let y = ym >
ym�1 > � � � > y2 > y1 > 0 be a decreasing sequence of intermediate
threshold values. Then, the intermediate events {El, l = 1, 2, . . . ,m}
are defined as El = {Y > yl, l = 1, 2, . . . ,m}. By sequentially condition-
ing on the event {El, l = 1, 2, . . . ,m}, the probability of event E, i.e., P
(E = {Y > y}), can be written as:

PðEÞ ¼ PðEmÞ ¼ PðE1Þ
Ym
l¼2

PðEl El�1j Þ ð2Þ

where P(E1) is equal to P(Y > y1) and P(El|El�1) is equal to{P(Y > yl|
Y > yl�1), l = 2, . . . ,m}. In implementations, y1, y2, . . . , ym are gener-
ated adaptively using information from simulated samples so that
the sample estimates of P(E1) and {P(El|El�1), l = 2, . . . ,m} always
correspond to a common specified value of conditional probability
p0 (e.g., 0.1) [5,6].

The efficient generation of conditional samples is pivotal to the
success of SS, and it is made possible through MCMC. In this study,
a modified Metropolis–Hasting (MM–H) algorithm [6,9] is used, in
which the candidate sample of a random vector is generated com-
ponent by component in a Markov chain and is accepted or
rejected according to not only the acceptance ratio but also the
occurrence of intermediate events (i.e., E1, E2, . . . , Em). Previous
studies [7,31] have demonstrated that using the MM–H algorithm
in SS allows generating conditional samples in high dimensional
space and solving high dimensional reliability problems efficiently.
In contrast, the classical Metropolis–Hasting (CM–H) algorithm
[21,16] suffers from the curse of dimension because the acceptance
ratio in the algorithm often decreases exponentially as the dimen-
sion of uncertain parameters space increases, leading to many
repeated samples in the Markov chain and significant reduction
of computational efficiency in high dimensional problems [9,26].

As shown in Fig. 1(a), SS starts with direct MCS, in which N MCS
samples are generated. The Y values of the N samples are calcu-
lated and ranked in an ascending order. The (1 � p0)N-th value in
the ascending list of Y values is chosen as y1 (see Fig. 1(b)), and
hence, the sample estimate for P(E1) = P(Y > y1) is always p0. In
other words, there are p0N samples with E1 = {Y > y1} among the
samples generated by direct MCS. Then, starting from the p0N sam-
ples with E1 = {Y > y1}, MCMC is used to simulate (1 � p0)N addi-
tional conditional samples given E1 = {Y > y1} so that there are a
total of N samples with E1 = {Y > y1}, as shown in Fig. 1(c). The Y
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