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a b s t r a c t

Generalization of soil–structure interface models from dry/saturated states to consider partially
saturated states is studied in this paper. For this purpose, basic constitutive equations of a conventional
elasto-plastic interface model are firstly presented. Then, consideration is given to the effect of partial
saturation on definition of effective stress, location of the critical state line as well as the impact of
interface state on plastic hardening modulus and dilatancy. For each concern, proper independent
approaches together with associated constitutive equations are discussed to be included in the basic
model as complementary ingredients. Among many different possibilities to combine complementary
constitutive equations for effective stress, relocation of the critical state line with degree of saturation,
and impact of the interface state on plastic hardening modulus and dilatancy, six essential cases are
selected. Evaluations show that all six cases can realistically consider the impact of partial degree of
saturation on the peak and residual shear strengths as well as the volume change behavior of unsaturated
interfaces.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Soil–structure interface is a particular class of soil–structure
interaction in which, soil interacts with structure at the contact
surface. The mechanical response of many soil–structure systems
such as shallow and deep foundations, tunnel linings, landfill lin-
ers, retaining walls, buried pipes, soil nails and reinforced soil
structures, as well as some in-situ tests like cone penetration test
are strongly influenced by the stress–displacement–strength
behavior of the soil–structure interfaces. Practically, interfaces
are considered as weak zones since their shear strength is usually
less than that of the surrounding soil. Research conducted in the
past few decades has revealed that the mechanical behavior
of soil–structure interfaces are influenced by several factors
including soil gradation and mineralogy [7], structural material
and roughness [7,13,23,50], soil density and normal stress
level [7,11,12,48], stress path and normal stiffness condition
[11–13,48]. However, recent experimental studies have indicated
that the soil degree of saturation must be added to the above list
since it can have a remarkable impact on the shear strength and
volume change response of soil–structure interfaces (e.g., Miller
and Hamid [43]; Hamid and Miller [20]; Khoury et al. [28]; Hossain
and Yin [22]; Borana et al. [4]; Hatami and Esmaili [21]). In arid or
semi-arid regions where the depth of unsaturated soil may be

subjected to sizable seasonal changes, an in depth understanding
of the mechanical behavior of unsaturated interfaces becomes
practically vital.

For interfaces in dry condition, De Gennaro and Frank [6] and
Mortara et al. [44] proposed constitutive models within the
elasto-plasticity theory taking into account phase transformation,
imposed normal stiffness, and residual strength. Hu and Pu [23]
and Navayogarajah et al. [45] put forward interface models based
on the disturbed state concept (see Desai [10] for review). De Jong
et al. [8] published experimental evidence supporting that the
mechanical behavior of soil–structure interfaces can be effectively
explained within the critical state soil mechanics. Introducing crit-
ical state compatible interface models, Liu et al. [39], Liu and Ling
[37], Lashkari [29,33], and Liu et al. [40] succeeded to simulate the
mechanical behavior of dry interfaces within a wide range of den-
sities and normal stresses using a unique set of parameters.

Constitutive modeling of unsaturated interfaces is essentially a
young matter. Recently, Hamid and Miller [19] and Khoury et al.
[28] modified the model of Navayogarajah et al. [45] and suggested
the first constitutive model for partially saturated interfaces. Later,
Lashkari [32] introduced a modification to the model of Lashkari
[29,33] in order to simulate the behavior of unsaturated interfaces
over a wide domain of density, net normal stress, and matric suc-
tion values using a single set of parameters. In accordance with the
independent stress state variables concept of Fredlund and Mor-
genstren [15] and Fredlund and Rahardjo [16], constitutive equa-
tions in the models of Hamid and Miller [20], Khoury et al. [28],
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and Lashkari [32] have been established in terms of net normal
stress, matric suction, and shear stress as the independent stress
variables. More recently, Lashkari and Kadivar [34] introduced
another extension to the model of Lashkari [33] for unsaturated
interfaces by adopting the effective (skeleton) stress theory of
Wheeler et al. [52] as well as the cementation parameter of Gal-
lipoli et al. [17,18] into the model formulation.

In recent years, several modern approaches have been intro-
duced in the literature for constitutive modeling of unsaturated
soils (e.g., [17,18,24,27,38,46]). Herein and as a benchmark, the
general formulation of the interface model of Lashkari [29,33] for
dry and saturated interfaces is adopted. Subsequently, the limita-
tions of the basic frame in modeling of the behavior of unsaturated
interfaces are discussed. Then, healing strategies for each draw-
back are explained exhaustively. To this purpose, detailed constitu-
tive equations for complementary ingredients are presented. The
complementary ingredients can be combined in 18 different ways
in order to enable the benchmark model to properly cover unsatu-
rated interfaces. However, due to the limitation in number of
pages, only six fundamental cases are selected. It is shown that
all six cases can reasonably simulate the mechanical behavior of
partially saturated interfaces.

2. Benchmark constitutive equations for soil–structure
interface model

The incremental relationship linking the changes in effective
(i.e., skeleton) stress and displacement vectors is (e.g., Mortara
et al. [44]; Liu and Ling [37]; Liu et al. [39,40]; Lashkari [29,33]):

_r00f g ¼ 1
t
½D�epf _Dg ð1Þ

where r00f g is effective (skeleton) stress vector whose definition is

presented in Section 4.1. fDg ¼ v
u

� �
is displacement vector in

which u and v are, respectively, the horizontal and normal displace-
ments. t represents the average interface thickness. Experimental
studies using image analysis and particle image velocimetry as well
as FEM simulations using advanced micropolar continuum theories
have revealed that the average interface thickness usually varies
from 2d50 to 12d50 depending on mineralogy, particles angularity,

crushability and the interface state [7,23,33,39,40,44]. In Eq. (1),
[D]ep is the elastic–plastic stiffness matrix that is calculated by
(e.g., Mortara et al. [44]; Liu and Ling [37]; Liu et al. [39,40]; Lash-
kari [29,33]):

½D�ep ¼ ½D�e � ½D�efRgfngT ½D�e
Kp þ fngT ½D�efRg ð2Þ

where a class of consistent constitutive equations for [D]e (elastic
stiffness matrix), {n} (yield direction vector), {R} (plastic strain rate
direction vector), and Kp (plastic hardening modulus) are presented
through Eqs. (3)–(8) in Table 1.

3. Definition of problem

In general, the benchmark constitutive model defined through
Eqs. (1)–(8) is incomplete since it is not capable to distinguish par-
tially saturated interfaces from dry and saturated ones. The current
knowledge signifies that water menisci in partially saturated geo-
materials affect the inter-particle forces and thus, definition of a
generalized skeleton (effective) stress theory for such materials is
necessary. The mentioned theory must be reduced into the well-
known Terzaghi’s effective stress theory and total stress, respec-
tively, in fully saturated and dry conditions. Furthermore, bonding
phenomenon associated with water menisci leads to the evolution
of critical state void ratio. The latter issue is important in view of
the fact that both dilation [Eq. (7) in Table 1], and plastic hardening
modulus [Eq. (8) in Table 1] are direct functions of the distance
between the current state from the critical state line (e.g., [5,32–
34,36–40,42,51]). In the following sections, proper essential ingre-
dients in order to complete the benchmark constitutive model are
discussed. To this aim, proper concepts/elements for skeleton
(effective) stress vector, relocation of critical state line, state
parameters, state-dependent elements and soil–water characteris-
tic curve are presented throughout Sections 4–8.

4. Effective (skeleton) stress concept

For partially saturated soils, Bishop [3] defined the effective
(skeleton) stress tensor in the form:

R00 ¼ Rnet þ v� s1 ð9Þ

Table 1
Consistent equations for [D]e, {n}, {R}, and Kp in Eq. (2).

Description Constitutive equation Parameter(s) a Equation

Elastic stiffness matrix
½D�e ¼ Ke

n 0
0 Ke

t

� �
¼

Ke
n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r00
n=pref

q
0

0 Ke
t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r00
n=pref

q
2
4

3
5 Ke

n0 and Ke
t0 (3)

Ke
n and Ke

t are, respectively, elastic normal and elastic shear moduli
pref (=100 kPa) is a reference normalizing pressure

Yield function f ¼ s� gr00
n ¼ 0 – (4)

g, stress ratio, acts as a hardening variable
s is shear stress and r00

n is defined through Eq. (13)

Yield direction vector fng ¼ @f=@r00
n

@f=@s

� �
¼ �g

1

� �
– (5)

Plastic strain rate direction vector fRg ¼ d
1

� �
– (6)

Dilation d ¼ A0

ffiffiffiffiffiffi
pref
r00
n

q
þ g

Mb A1 � A0

ffiffiffiffiffiffi
pref
r00
n

q� �h i
ðMd � gÞ A0 and A1 (7)

Mb and Md are, respectively, state-dependent peak and dilatancy stress ratios.
Mb and Md are mathematically defined in Section 7

Plastic hardening modulus Kp ¼ h0K
e
t

Mb

g � 1
� �

h0 (8)

where Ke
t is defined through Eq. (3)

a In the third column of Table 1, A0 and A1, and h0 are dimensionless model parameters. Ke
n0 and Ke

t0 must be in kPa when pref = 100 kPa is used.
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