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Mixed-mode fracture modeling with smoothed particle hydrodynamics
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a b s t r a c t

In this work, we describe a coupled Drucker–Prager and Grady–Kipp SPH framework in order to simulate
mode I, mode II and mixed mode failure under the same formulation. This framework is then applied to
study failure in uniaxial compression of gypsum samples containing a single angled flaw.
To validate the model, results are compared with the experimental analysis and shows good agree-

ment, where fracture initiation positions and angles are well represented. This trend of agreement con-
tinues beyond initiation, through to propagation, and finally post-failure behavior.
The methodology and results shown here describe a powerful tool for study of fracture mechanics.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Meshless methods such as the Smoothed Particle Hydrodynam-
ics (SPH) method have been applied in recent years to study prob-
lems in rock mechanics. First developed to study problems in
astrodynamics by Gingold and Monaghan [1], and Benz et al. [2],
the method has since been successfully applied to a broad range
of problems. These include, but are not limited to, elastic flow
[3], fluid flow [4,5], impact problems [6], heat transfer problems
[7], multiphase flow [8,9], geophysical flow [10], fluid–structure
interaction [11,12] and post-failure of cohesive and non-cohesive
soils [13].

The first application of SPH to solid mechanics was carried out
by Libersky and Petschek [14]. Their work was subsequently
extended to simulation of the fracture process in brittle solids by
Benz and Asphaug [15]. Randles and Libersky [16] and then Gray
et al. [17] have since made significant improvements in extending
SPH to elastic dynamics. More recently, Douillet-Grellier et al. [18]
proposed a new approach for stress based boundary conditions in
SPH, which has been validated for elastic problems in solid
mechanics. Finally, Liu and Liu [19] and Monaghan [20] both give
exhaustive reviews of recent developments within the SPH
community.

SPH is based upon a formulation where multiple crack initia-
tions and propagations may emerge naturally from a well formu-
lated constitutive model. Due to the meshless nature of the
method, no remeshing is required to simulate large deformations.
Similar to more traditional methods such as the finite element
method, material properties may be specified a priori, requiring
no calibration. The challenge of accurate fracture modeling there-
fore lies in the choice and implementation of suitable constitutive
models to capture both shear and tensile failure.

A number of authors have pursued the Drucker–Prager plastic-
ity model in order to capture plasticity and shear failure in SPH
models. The first implementation of Drucker–Prager plasticity in
an SPH framework was carried out by Bui et al. [13], who used this
methodology to study soil collapse and slope stability. This
approach has since been used to study failure due to compression
in a Brazilian test [21,22], failure in jointed media [23], large defor-
mation in granular materials [24], and the shear box laboratory
experiment in a multiscale framework [25].

For tensile failure, the Grady–Kipp damage model can be incor-
porated into an SPH framework as proposed by Benz and Asphaugh
[26,15] and validated for failure in solid bars loaded in tension. Use
of the Grady–Kipp damage model has proved successful for simu-
lation of high speed impacts [15,27,28]. In addition to impact prob-
lems, the Grady–Kipp damage model has also been applied to
simulation of failure in magma chambers [29], as well as the penny
shaped crack problem [30].

The accuracy of the Drucker–Prager and Grady–Kipp constitu-
tive models have been well demonstrated in the literature. This
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work is concerned with SPH simulation of mixed-mode fracture
during uniaxial compression of gypsum samples including pre-
existing flaws. Thus, we begin with a description of the Drucker–
Prager and Grady–Kipp constitutive models, followed by discus-
sion on coupling of these two constitutive models to capture both
shear and tensile failure. The coupled Drucker–Prager and Grady–
Kipp framework described herein is then validated against the
experimental results of Wong [31].

2. Governing equations

An SPH discretization begins with governing equations for mass
and momentum conservation equations in a Lagrangian system,
which are given as

Dq
Dt
¼ �qr � v ð1Þ

Dv
Dt
¼ 1
q
r � rþ g ð2Þ

where q is the density; v is the velocity; r is the stress tensor; g is
the external body force per unit mass and D=Dt denotes the mate-
rial derivative following the motion.

To close the system of equations given by Eqs. (1) and (2) a con-
stitutive relation for evaluation of the stress tensor must be given.
This begins by splitting the stress tensor into deviatoric and hydro-
static parts.

r ¼ trðrÞ
3

I þ s ¼ �pI þ s ð3Þ

in which p is the hydrostatic pressure, and s is the second order
deviatoric stress tensor.

With this definition the hydrostatic pressure is treated in the
same manner as fluid pressure in an SPH fluid framework. A den-
sity based state equation of state may therefore be used [3,16].
However, Bui et al. proposed that hydrostatic pressure may instead
be calculated directly from the rock constitutive equation by the
standard definition of mean stress [13], where this approach is
adopted in this work.

The above set of governing equations are then solved through
discretization to a set of particles, by exploiting an interpolating
kernel.

2.1. Constitutive model

The components of the strain rate tensor are given as

_e ¼ 1
2
rv þ ðrvÞ|ð Þ ð4Þ

As the stress tensor in (3), the strain rate tensor is expressed as
a combination of a hydrostatic and deviatoric parts.

_e ¼ _e� trð _eÞ
3

I
� �

þ trð _eÞ
3

I ¼ _ed þ _ev ð5Þ

where _ed and _ev are the deviatoric and volumetric parts of the elas-
tic strain rate tensor, which is calculated by the generalized Hooke’s
law as

_r ¼ 2G _ed þ K _ev ð6Þ
in which G and K are the shear and bulk moduli respectively. A yield
function, Fðr;qÞ, defines the elastic domain as the set

v ¼ frjFðr;qÞ < 0g ð7Þ
where q is the component of internal variables associated with the
phenomenon of softening. It is convenient to define the flow rule in

terms of flow (or plastic) potential, Qðr;qÞ. Then the flow vector, N,
is obtained as

N ¼ @Qðr;qÞ
@r

ð8Þ

In this work, the plastic potential function does not coincide
with the yield function, Fðr;qÞ, the flow rule is then called a
non-associated flow rule. The general elasto-plastic constitutive
model is given by

_ee ¼ _e� _kN ð9Þ

_q ¼ � _k
@Qðr;qÞ

@q
ð10Þ

where _ee is the elastic strain rate tensor. This is taken together with
the loading–unloading conditions

_k P 0; F 6 0; _kF ¼ 0 ð11Þ
where _k is the plastic consistency parameter.

The above initial value problem (9)–(11) should be solved
numerically for the set of softening internal variables and the plas-
tic multiplier of each SPH particle. This procedure will be discussed
in more detail in Section 4.1.1.

3. The SPH method

An SPH model consists of a set of points with fixed volume,
which possess material properties and interact with all neighbor-
ing particles by a weighting function (or smoothing kernel) [1]. A
particles support domain, K, is given by its smoothing length, h,
which is in turn the radius of the smoothing kernel. To obtain
the value of a function at a given particle location, values of that
function are found by taking a weighted (by the smoothing func-
tion) interpolation from all particles within the given particles sup-
port domain. Analytical differentiation of the smoothing kernel is
used to find gradients of this function. Detailed concepts and
descriptions of this method are given by Monaghan [3].

To begin, we define the kernel estimation

AðxÞ ¼
Z
X
Aðx0ÞWðx� x0;hÞdx; 8 x 2 X � Rd ð12Þ

where A is a vector function of the position vector x;X is the volume
of the integral containing the point x, and Wðx� x0;hÞ is the
smoothing kernel. The interpolated value of a function A at the posi-
tion xa of particle a can be expressed using SPH smoothing as

AðxaÞ ¼
X
b2Ka

Ab
mb

qb
Wðxa � xb; hÞ: ð13Þ

in whichmb and qb are the mass and the density of neighboring par-
ticle b. Ka ¼ fb 2 Nj j xa � xb j6 jðha þ hbÞ=2g is the set of particles
which are neighbors of particle a and lie within its defined support
domain. j depends on the choice of the kernel, it is equal to 2 for
the cubic spline kernel function used in this paper. The gradient
of the function A at the position of particle a is evaluated by differ-
entiating the smoothing kernel W given in Eq. (13) as

rAðxaÞ ¼
X
b2Ka

Ab
mb

qb
raWðxa � xb;hÞ: ð14Þ

In practice, Libersky et al. find that by exploiting the symmetric
properties of the kernel, a more accurate formulation is found [32]
as

rAðxaÞ ¼
X
b2Ka

ðAb � AaÞmb

qb
raWðxa � xb; hÞ: ð15Þ
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