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a b s t r a c t

In this work a novel approach is presented for the Boundary Element analysis of problems in geomechan-
ics. Firstly, Non-Uniform Rational B-Spines (NURBS) are used for the description of the geometry and for
the approximation of the unknowns. This results in a significant decrease in the number of parameters
used for an accurate description of the geometry as well as a decrease in the number of degrees of free-
dom required for good quality results. Secondly, NURBS are also used for the description of the geometry
of geological inclusions, which can have properties different to the rock mass and can experience inelastic
behavior.
After a short introduction to the theory, some details of implementation are shown. On test examples,

involving elastic homogeneous domains, it is first shown that the method delivers accurate results with
fewer parameters and number of unknowns as compared with conventional analysis. Solutions are com-
pared to either known solutions or with conventional BEM analyses. Geological inclusions are introduced
next and results of test examples are compared with Finite Element analyses. Finally a practical example
is shown.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The Boundary Element Method (BEM) is ideally suited for the
analysis of problems in geomechanics as it can easily consider infi-
nite and semi-infinite domains, since the radiation condition is
implicitly fulfilled. In the case of elastic, homogeneous domains
only boundary integrals appear, and the solution involves a dis-
cretization of the boundary, thereby reducing the analysis effort
by an order of magnitude.

However, to analyze real problems in geomechanics the consid-
eration of heterogeneous and inelastic ground conditions is essen-
tial. The BEM can be extended to analyze these problems, but
additional volume integrals appear. The solution requires the dis-
cretization of a volume, the attractiveness of the method is consid-
erably reduced. However, the volume integrals only cover the part
of the domain that has different material properties or behaves in
an inelastic way. Currently the most popular method is to use
internal cells for the volume discretization. Cells are basically
identical to Finite Elements but the main difference is that no

additional degrees of freedom are introduced, as their only purpose
is to evaluate the volume integral. The requirement for an
additional volume discretization seems to have severely restricted
the application of the BEM in geomechanics, with the Finite
Element or similar domain methods dominating. In this paper a
novel approach will be presented that does not require the gener-
ation of a cell mesh.

Isogeometric analysis [1] has gained significant popularity in
the last decade because of the fact that geometry data can be taken
directly from Computer Aided Design (CAD) programs, potentially
eliminating the need for mesh generation. NURBS basis functions,
that are used for the definition of the geometry, are able to describe
certain geometries such as arcs exactly. Therefore, as will be
shown, the number of parameters, required to accurately define
geometry, can be reduced significantly. As will be shown, NURBS
patches can also be used to define geological inclusions, opening
the way to use geological information directly from CAD programs.

2. The BEM with volume effects

To apply the BEM to heterogeneous and inelastic problems, so
called body force effects have to be included. Using the theorem
of Betti as explained in [2], the boundary integral equation with
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body forces acting in a sub-volume V0 can be written in incremen-
tal form and in matrix notation as (see Fig. 1):

c _uðyÞ ¼
Z
S
Uðy;xÞ_tðxÞdSþ

Z
S0

Uðy; �xÞ_t0ð�xÞdS0

�
Z
S
Tðy;xÞ _uðxÞdSþ

Z
V0

Uðy; �xÞ _b0ð�xÞdV0 ð1Þ

where c is a free term, Uðy;xÞ and Tðy;xÞ are matrices containing
fundamental solutions (Kernels) for the displacements and tractions
at a point x due to a unit force at a point y [3], _uðxÞ and _tðxÞ are
increments of the displacement and traction vectors on the surface

S, defining the problem domain. _b0ð�xÞ are increments of body force
inside the inclusion and _t0ð�xÞ are increments of tractions related to
the body force acting on surface S0 bounding V0.

The integral equations can be solved for the unknowns u or t by
discretization. As in the majority of previous work on the isogeo-
metric BEM [4–10] we use the collocation method, i.e. we write
the integral equations for a finite number, N, of source or colloca-
tion points yn:

c _uðynÞ ¼
Z
S
Uðyn;xÞ_tðxÞdSþ

Z
S0

Uðyn; �xÞ_t0ð�xÞdS0

�
Z
S
Tðyn;xÞ _uðxÞdSþ

Z
V0

Uðyn; �xÞ _b0ð�xÞdV0 ð2Þ

with n ¼ f1; . . . ;Ng.
For the numerical evaluation of the surface integrals over S we

divide the boundary into patches and use a geometry independent
field approximation approach for each patch, i.e. we use different
basis functions for the description of the geometry and for the field
values:

xe ¼
XK
k¼1

NkðuÞ � xe
k ð3Þ

ue ¼
XKd

k¼1

Nd
kðuÞ � ue

k ð4Þ

te ¼
XKt

k¼1

Nt
kðuÞ � tek ð5Þ

In the above the superscript e refers to the number of the patch,

Nk;N
d
k ;N

t
k are NURBS basis functions of the local coordinate u for

describing the geometry xe, displacements ue and tractions te;xe
k

specify the location of control points, ue
k; t

e
k are parameter values

and K;Kd;Kt specify the number of parameters for each patch.
For an excavation problem for example the following system of

equations can be assembled:

½T�fug ¼ fFg þ fFg0 ð6Þ
where ½T� is an assembled matrix with coefficients related to Kernel
T and fug is a vector that collects all displacement components on
points yn. fFg is a vector related to the applied tractions due to exca-

vation and fFg0 ¼ fFgS00 þ fFgV0
0 is the right hand side related to the

body force effects, i.e. related to the integrals over S0 and V0 in Eq.
(2). Details of the implementation of the isogeometric BEM for elas-
tic homogeneous domains can be found in [3,11].

3. NURBS basis functions

A detailed treatise on NURBS basis functions is presented in [3],
here only a short explanation is given. NURBS or Non-uniform
rational B-splines are an extension of classical B-splines. To define

B-splines we start with a knot vector. This is a vector containing a
series of non-decreasing values of the local coordinate:

N ¼ u0 u1 � � � uNð Þ ð7Þ
We define the entries in the vector as knots. With the knot vec-

tor a recursive formula is applied. First we compute the functions
for order p ¼ 0 (constant) and for i ¼ 0; . . . ;N.

Ni;0ðuÞ ¼
1 if ui 6 u < uiþ1

0 otherwise

�
ð8Þ

Higher order basis functions are defined by referencing lower
order functions:

Ni;pðuÞ ¼ u� ui

uiþp � ui
Ni;p�1ðuÞ þ uiþpþ1 � u

uiþpþ1 � uiþ1
Niþ1;p�1ðuÞ ð9Þ

NURBS basis functions are obtained by including weights, wi:

Ri;pðuÞ ¼ Ni;pðuÞwiPI
j¼0Nj;pðuÞwj

ð10Þ

4. Geometry description with NURBS

NURBS are ideally suited for the description of geometry (for
example they are able to describe circular arcs exactly) and this
is one of the main reasons they are used by the CAD community.
The main difference to commonly used Lagrange polynomials, is
that the concept of nodal points is replaced by a concept of control
points, which do not always lie on the curve.

As an example we show the description of the geometry of an
NATM tunnel, where the design shape is specified by arcs (center,
radius and extent) as shown in the tables in Fig. 2. One half of the
tunnel can be described with 1 NURBS patch of order 2 and only 7
control points.

The control point coordinates and weights can be computed
from arc centers, radii and start/end angles using a simple formula
(see [3]) and are given by:

x y weight

0.0 5.65 1.0

4.55 5.65 0.707

4.55 1.1 1.0

4.55 -0.97 0.82

2.61 -1.67 1.0

1.33 -2.04 0.99

0.0 -2.04 1.0

y

x
dS

S

ṫ0
dS0

S0

dV0

x̄

V0 ḃ0

Fig. 1. Explanation of the derivation of the integral equation with volume effects.
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