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a b s t r a c t

A method of combining 3D Kriging for geotechnical sampling schemes with an existing random field
generator is presented and validated. Conditional random fields of soil heterogeneity are then linked with
finite elements, within a Monte Carlo framework, to investigate optimum sampling locations and the
cost-effective design of a slope. The results clearly demonstrate the potential of 3D conditional simulation
in directing exploration programmes and designing cost-saving structures; that is, by reducing
uncertainty and improving the confidence in a project’s success. Moreover, for the problems analysed,
an optimal sampling distance of half the horizontal scale of fluctuation was identified.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Soil properties exhibit three dimensional spatial variability
(i.e. heterogeneity). In geotechnical engineering, a site investiga-
tion may be carried out, and the data collected and processed in
a statistical way to characterise the variability [1–10]. The out-
comes of the statistical treatment, e.g. the mean property value,
the standard deviation or coefficient of variation, and the spatial
correlation distance, may be used as input to a geotechnical model
capable of dealing with the spatial variation (e.g. a random field
simulation). However, when it comes to making use of the field
data, there arises the question: How can we make best use of the
available data? The idea is to use the data more effectively, so that
it is worth the effort or cost spent in carrying out the investigation,
as well as the additional effort in post-processing the data. The aim
of this paper is to contribute towards answering this question.

For example, cone penetration tests (CPTs) are often carried out
in geotechnical field investigations, in order to obtain data used in
implementing the design of a structure. The amount of data from
CPT measurements is often larger than from conventional labora-
tory tests. This is useful, as a large database is needed to accurately
estimate the spatial correlation structure of a soil property. For
example, Fenton [3] used a database of CPT profiles from Oslo to

estimate the correlation statistics in the vertical direction, and
Jaksa et al. [5] used a database from Adelaide to estimate the
correlation distances in both the vertical and horizontal directions.

In geotechnical engineering, a substantial amount of numerical
work has been done using idealised 2D simulations based on
collected in-situ data (e.g. [4]), although a 3D simulation would
be preferable due to site data generally being collected from a 3D
space. However, there are relatively few studies simulating the
effect of 3D heterogeneity due to the high computational require-
ments. Examples include the effect of heterogeneity on shallow
foundation settlement [11–13], on steady state seepage [14–16],
on seismic liquefaction [17] and on slope reliability [18–27].

The above investigations all used random fields to represent the
soil spatial variability and the finite element method to analyse
geotechnical performance within a Monte Carlo framework, a form
of analysis sometimes referred to as the random finite element
method (RFEM) [28]. However, they did not make use of the spatial
distribution of related measurement data to constrain the random
fields. In other words, for those applications that are based on real
field data, many realisations not complying with the field data at
the measurement locations will be included in the simulation,
which, in turn, will result in an exaggerated range of responses
in the analysis of geotechnical performance.

Studies on conditional simulations are available in geostatistics
in the field of reservoir engineering [29]. However, there are not
many studies dealing with soil spatial variability in geotechnical
engineering that utilise conditional simulation (some 2D exceptions
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include, e.g., [6,30–32]). This is partly due to the smaller amount of
data generally available in geotechnical engineering, and partly due
to there often not being a computer program specially implemented
for those situations where there are sufficient data (e.g. CPT, vane
shear test (VST)), especially in 3D. However, unconditional random
fields can easily be conditioned to the known measurements by
Kriging [29,33]. Hence, following the previous 2D work of Van den
Eijnden and Hicks [31] and Lloret-Cabot et al. [30], this paper seeks
to implement and apply conditional simulation in three
dimensional space, in order to reduce uncertainty in the field where
CPT measurements are carried out.

Usually, site investigation plans are designed to follow some
regular pattern. For example, a systematic grid of sample locations
is generally used, due to its simplicity to implement [5]. Moreover,
although there are various sampling plans in terms of layouts, it is
found that systematically ordered spatial samples are superior in
terms of the quality of estimates at unsampled locations [34].
Therefore, this paper will be devoted to implementing a 3D Kriging
algorithm for sampling schemes following a regular grid. This will
then be combined with an existing 3D random field generator to
implement a conditional simulator. However, extension to
irregular sampling patterns is straightforward based on the
presented framework.

The implemented approach has been applied to two idealised
slope stability examples. The first demonstrates how the approach
may be used to identify the best locations to conduct borehole
testing, and thereby allow an increased confidence in a project’s
success or failure to be obtained. While it is very important to
pay sufficient attention to the required intensity of a site investiga-
tion (i.e. the optimal number of boreholes) with respect to the
site-specific spatial variability, as highlighted by Jaksa et al. [12],
the first example starts by focusing on the optimum locations for
carrying out site investigations for a given number of boreholes,
before moving on to consider the intensity of testing. The second
example compares different candidate slope designs, in order to
choose the best (most cost-effective) design satisfying the reliabil-
ity requirements.

For simplicity, this paper focuses on applications involving only
a single soil layer (i.e. a single layer characterised by a statistically
homogeneous undrained shear strength), although the extension
to multiple soil layers is straightforward. Moreover, the effect of
random variation in the boundary locations between different soil
layers can also be easily incorporated by conditioning to known
boundary locations (e.g. corresponding to where the CPTs have
been carried out).

2. Theory and implementation

2.1. Conditioning

A conditional random field, which preserves the known values
at the measurement locations, can be formed from three different
fields [28,35,36]:

ZrcðxÞ ¼ ZruðxÞ þ ðZkmðxÞ � ZksðxÞÞ ð1Þ

where x denotes a location in space, ZrcðxÞ is the conditionally
simulated random field, ZruðxÞ is the unconditional random field,
ZkmðxÞ is the Kriged field based on measured values at
xiði ¼ 1;2; . . . ;NÞ, ZksðxÞ is the Kriged field based on unconditionally
(or randomly) simulated values at the same positions
xiði ¼ 1;2; . . . ;NÞ, and N is the number of measurement locations.

The unconditional random field can be simulated via several
methods [37]; for example, interpolated autocorrelation [38],
covariance matrix decomposition, discrete Fourier transform or
Fast Fourier transform, turning bands, local average subdivision

(LAS), and Karhunen–Loeve expansion [39], among others. The
LAS method [40] is used in this paper. The Kriged fields are
obtained by Kriging [41], which has found extensive usage in
geostatistics [42,43]. The LAS and Kriging methods are briefly
reviewed in the following sections.

2.2. Anisotropic random field generation using 3D LAS

The LAS method [40,44] is used herein to generate the
unconditional random fields, using statistics (i.e. mean, variance
and correlation structure) based on the observed field data. The
LAS method proceeds in a recursive fashion, by progressively
subdividing the initial domain into smaller cells, until the random
process is represented by a series of local averages. The major
advantage is its ability to produce random fields of local averages
whose statistics are consistent with the field resolution; that is, it
maintains a constant mean over all levels of subdivision, and
ensures reduced variances as a function of cell size based on vari-
ance reduction theory [45], taking account of spatial correlations
between local averages within each level and across levels.

The following covariance function is used in the subdivision
process:

CðsÞ ¼ Cðs1; s2; s3Þ ¼ r2 exp �2js1j
h1

�
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where r2 is the variance of the soil property, s is the lag vector, and
h1, h2 and h3, and s1, s2 and s3 are the respective scales of fluctuation
and lag distances in the vertical and two lateral coordinate
directions, respectively. Herein, an isotropic random field is initially
generated by setting h1 = h2 = h3 = hiso; i.e. so that hiso equals the
horizontal scale of fluctuation, hh. This field is then squashed in
the vertical direction to give the target vertical scale of fluctuation,
hv. The 3D LAS implementation of Spencer [25] has been used in this
paper, and the reader is referred to Spencer [25] and Hicks and
Spencer [19] for more details. Note also that a truncated normal
distribution has been used to describe the pointwise variation in
material properties [19].

2.3. Kriging

In contrast to conventional deterministic interpolation
techniques, such as moving least squares and the radial point
interpolation method, Kriging incorporates the variogram
(or covariance) into the interpolation procedure; specifically,
information on the spatial correlationof themeasuredpoints is used
to calculate theweights.Moreover, standard errors of the estimation
can also be obtained, indicating the reliability of the estimation and
the accuracy of the prediction. Kriging is a method of interpolation
for which the interpolated values are modelled by a Gaussian pro-
cess governed by prior covariances and for which confidence inter-
vals can be derived. While interpolation methods based on other
criteria need not yield the most likely intermediate values, Kriging
provides a best linear unbiased prediction of the soil properties (Z)
between known data [43,46] by assuming the stationarity of the
mean and of the spatial covariances, or variograms. A brief review
is first given to facilitate understanding of the implementation.

Suppose that Z1; Z2; . . . ; ZN are observations of the random
field ZðxÞ at points x1; x2; . . . ; xN (i.e. Zi ¼ ZðxiÞ ði ¼ 1; 2; . . . ; NÞ).
The best linear unbiased estimation (i.e. Ẑ) of the soil property at
some location x0 is given by

Ẑðx0Þ ¼
XN
i¼1

kiZi ¼
XN
i¼1

kiðx0ÞZðxiÞ ð3Þ
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