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a b s t r a c t

Uncertainty estimation and consideration in engineering is an important practice to design reliable struc-
tures especially in geotechnics since the level of control with regards to the material parameters is rela-
tively low. The definition of reliability indices to approximate the probability of failure allows for a better
assessment of stability with fewer computations than using alternative methods. Nonetheless, yet an
optimisation problem needs to be solved. In this work, a genetic algorithm is developed to solve this opti-
misation problem considering the limit equilibrium method to search for multiple critical failures. Study
cases are presented to illustrate the capabilities of the method.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Slope stability is an important and challenging problem in
geotechnical engineering because of uncertain material data and
the potential existence of more than one failure surface. Determin-
ing the stability of slopes simply by the so-called factor of safety
(FOS) is not always the best approach. In fact, the rational method
for considering uncertainties in engineering problems such as mul-
tiple slope stability is via a probabilistic reliability assessment. Fur-
thermore, material properties vary along the slope [1] and there is
no assurance that the failure surface with minimum FOS is the
maximum probability of failure (Pf) [2,3]. In multiple slopes, sev-
eral distinct critical failure surfaces may be located at the different
positions. It is actually unknown whether a single slope failure or
combination of two or more slopes failures may happen. As noted
in [4,5], missing critical multiple slip surfaces may lead to unsafe
design.

A number of methods for deterministic slope analyses have
been proposed including the limit equilibrium method (LEM) with
circular and non-circular failure surface [6], the finite element
method (FEM), the finite difference method (FDM) and the limit
analysis method [4]. Among them, the LEMs are the most widely
adopted by practitioners [4] due to its simplicity. Its major limita-
tion is the need for postulating a potential failure surface first.

In a probabilistic reliability analysis, random soil properties are
considered and the probability of failure Pf is quantified. To accom-
plish this, the Monte Carlo simulation (MCS) method is usually
employed. This method has been published and adopted into com-
mercial software packages such as SVSlope, FLAC, PLAXIS and
GEO5. A limitation of the MCS method is its great dependency on
the number of samples and random seeds. Moreover, the resulting
probability of failure corresponds to only one scenario regarding
the location and shape of the failure surface. Other methods
include the response surface method (RSM) [7], Kriging [8] and
quasi Monte Carlo [9].

For large problems such as the Vajont slope failure [10], running
MCS considering every possible failure surface is a very time con-
suming process. Therefore, in the structural reliability field, an
alternative method using the so-called Hasofer–Lind reliability
index was developed in order to approximate the probability of
failure. This index (b) is quantified by solving an optimisation
problem and then the probability of failure is calculated by means
of Pf ¼ Uð�bÞ with U being the standard cumulative distribution
function.

To circumvent some of the aforementioned problems connected
to Monte Carlo simulations (e.g. computational inefficiency and
single slope limitation), alternative optimisation techniques such
as genetic algorithms (GA) may be applied. With regards to the
computational inefficiency, the large number of Monte Carlo sim-
ulations is determined with basis on the number of parameters
and accuracy required. However, these parameters and accuracy
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can vary between problems (e.g. unknown number of potential
failure surfaces in multiple slopes) and hence they are difficult to
be computed. Here, trial and error is used to compute the number
of MC simulations for the sake of comparisons.

GAs are optimisation techniques with a good popularity in
engineering and many other areas [11–14] due to their relative
simplicity and, more importantly, due to the limited requirements
with regards to the problem formulation – basically, an objective
function and a set of constraints are the only components needed.
The convenience of not requiring gradients is commonly appreci-
ated by users of genetic algorithms. In the case of multiple poten-
tial failures, GAs have an advantage because they are able to handle
multimodal problems as well. Other commonmethods in Engineering
and also classified as meta-heuristic as GA [17] are: particle swarm
optimisation [4], ant colony [16], and some nature-inspired algo-
rithms [15], to name a few.

To determine the reliability of a slope, the reliability index b is
calculated first [18,19]. Other works [20–29] also confirm the
importance of reliability indices and there are several methods to
determine this index including methods based on genetic algo-
rithms [30] for the problems of bearing capacity and methods
based on the finite element method [31,32] for other situations.
Nonetheless, the development of an efficient solution technique
considering probabilistic analysis and multiple slopes stability is
still under current research. This paper therefore presents a genetic
algorithm in order to develop such technique.

This paper is organised as follows. In Section 2, a version of the
limit equilibrium method, the FORM reliability method, and the
genetic algorithm are presented. Section 3 presents the numerical
studies where a number of simple cases are analysed employing
the GA and are compared against results from a commercial soft-
ware (SVSlope). The Vajont landslide is then assessed with regards
to its pre-failure stability and the results are compared against
field observation [10] in addition to other computations. Section 4
finally draws some conclusions.

2. Methods

In this work, a simple stability analysis program is developed
considering the Spencer limit equilibrium method (LEM) [33].
Nonetheless, other LE methods could be equally considered. The
LEM code is then combined with a probabilistic reliability assess-
ment method where the optimisation problem is solved using an
improved genetic algorithm.

2.1. Limit equilibrium method

In Spencer’s method, both forces and moment equilibrium are
satisfied. The interslice forces are assumed to be parallel and the
angle of their inclination k needs to be computed using an iterative
technique. The factor of safety (FOS) is calculated by considering
the equilibrium of forces (Eq. (1)) and the equilibrium of momen-
tum (Eq. (2)); the following equations are solved:
Xn
i¼1

Qi ¼ 0 ð1Þ

Xn
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ð3Þ
where Qi is the resultant force, Fvi and Fhi are the vertical and hori-
zontal forces, respectively, hi is the inclination of the failure surface,

c0i is the effective cohesion,Dli is the length of slices along the failure
surface, ui is the pore water pressure, /0

i is the effective frictional
angle, i is the number of the slice, Mn is the moment acting on the
failure surface, and xbi and ybi are the distances from the centre of
the to the origin of the failure surface in x and y directions (Fig. 1).

2.2. Reliability analysis

The first order reliability method (FORM) is considered in this
work; see, e.g. [34]. The reliability analysis starts with the quantifi-
cation of the probability of failure Pf which is defined by means of

Pf ¼ PðgðXÞ 6 0Þ ¼
Z
gðXÞ60

f ðXÞdX � 1�UðbÞ ð4Þ

where g(X) is the limit state function and f(X) is the joint probability
density function (PDF) of the random variables X = [X1, X2, . . ., XN].
Therein, U symbolises the cumulative distribution function (CDF)
of the standard normal distribution and b is the reliability index.
It is worth noting that the value of Pf computed from the reliability
index is only an approximation, except when the random variables
are normally distributed and the limit state surface is linear. In the
N-dimensional hyperspace of the basic variables, g(X) = 0 is the
boundary region with negative values indicating failure (Fig. 2).

The reliability index is the shortest distance from the limit state
curve to the origin of the transformed space of random variables
and is defined by

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
YTCY

p
with Yi ¼ Xi � li

ri
ð5Þ

where Xi is the random variable of ith material parameter, C is the
inverse of the correlation matrix between parameters and Y is a
vector of normalised (transformed) variables. To illustrate the com-
mon range of values of b, Table 1 presents the reliability index values
with corresponding Pf values and an auxiliary terminology regarding
expected performance levels.
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Fig. 1. Geometry and variables considered in Spencer’s method.
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Fig. 2. Limit state and reliability index b in the normalised (mapped) space.
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