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a b s t r a c t

Spectral element method is proposed to analyze the mechanical response of transversely isotropic elastic
multi-layered pavement structure subjected to axisymmetric loading. Based on the basic constitutive
equations and modified Love’s function for transversely isotropic elastic media, the governing state equa-
tion of a multi-layered transversely isotropic medium was deduced. From the equation, s spectral layer
element for a single layer (i.e., a stiffness matrix) was acquired. The global stiffness matrix was obtained
by assembling the interrelated layer elements based on the principle of the finite element method and
the boundary conditions, and the solution for the corresponding problem was obtained by solving the
algebraic equations of the global stiffness matrix. The solutions in the physical domain were acquired
by means of the Fourier–Bessel superposition. The validity of the proposed solution was examined by
comparing with an existing exact solution and finite element method respectively. Subsequent to solu-
tion validation, a parametric study by varying n-values of unbound layer was carried to investigate the
influence of the transversal isotropy on pavement response. The proposed analytical solution demon-
strated the ability of solving the mechanical response of transversely isotropic elastic multi-layered pave-
ment structures subjected to axisymmetric loading.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Pavement engineers have been greatly interested in the behav-
ior of layered materials under certain loading conditions mainly
due to the fact that asphalt pavements are composed of horizontal
layers of materials of different types. Conventionally, although
asphalt mixtures are generally considered as typical viscoelastic
materials, the asphalt pavement is regarded as a layered elastic
structure for mechanical response analysis with many studies
already being carried out based on the well-known layered elastic
theory subjected to vertical loads distributed over circular area.
Burmister [1] presented the first solution for both two-layer and
three-layer systems. Some computer programs have been devel-
oped based on Burmister’s theory in the last decades, e.g., BISAR
[2], Kenlayer [3], JULEA [4], with JULEA being further incorporated
into the MEPDG [5]. Recently, several analytical approaches and
solutions of multi-layered structures have laterally considered
comprehensive aspects: the dynamic effect, the elastic or vis-
coelastic behavior of material, or the damping effect (e.g., the solu-
tions developed by Xu [6] and Lee [7]). However, pavement

materials are often assumed to be homogeneous and isotropic
when stress and strain are calculated in most existing researches
on flexible pavement theory.

In the last years, many researchers have found that the layer
pavement materials are transversely isotropic [8–10]. Compared
to a uniform elastic material model, the use of a multi-layered
transversely isotropic model to describe the deformation of a lay-
ered medium is more reasonable [8,11,12]. Therefore, it is more
reliable and important to consider these anisotropic properties
when stress and displacement solutions for these materials are
derived. The characterization and modeling of the anisotropic
properties of the unbound granular aggregate layer (e.g., soils)
have been widely explored in geomechanics and geotechnical engi-
neering [13–16]. Several finite element methods (FEM) studies
have investigated the effects of pavement materials’ transverse
anisotropy on asphalt pavement mechanical responses [17,18],
however, there are few analytical studies for pavement response
based on transversely isotropic theory.

In the decades, the spectral element method developed by
Doyle [19] combines elegantly the exact solution of wave motions
with the finite element organization of the system matrices. In this
approach, the system is solved by double summation over the
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involved frequencies and the wave numbers [20], alleviating thus
the inconvenience of the numerical implementation of infinite
integration. In the spectral element technique, an analytical layer
element is used to describe a single layer, which not only reduces
the computational requirement dramatically but also demon-
strates the numerical efficiency and stability due to the absence
of positive exponential functions and evades the inconvenience
of the numerical evaluation of contour integration between zero
and infinity. Recently, the spectral elements method is utilized
for the analysis of the dynamic behavior of pavement structures
under the impact of the FWD load pulse comprehensively [21–23].

The main objective of this paper was to extend the spectral ele-
ment method to analyze a transversely isotropic elastic medium
subjected to axisymmetric static loading, and then present an
alternative algebraic formulation for the development of the ana-
lytical and numerical techniques for transversely isotropic elastic
pavement. As an application, the case of pavement response under
the vertical loads distributed over circular area is validated. The
influences of the degree of transverse anisotropy (i.e., the ratio of
stiffness or modulus in horizontal and vertical directions, n-
value) of the multi-layered pavement on the displacements and
strains response are discussed.

2. Governing state equation

The vertical load applied to the surface is uniformly distributed
over a circular area, which leads to an axially symmetric problem.
The equations of the theory of elasticity for the three-dimensional
problem in cylindrical coordinates as used in this study are sum-
marized in the following.

The partial differential equations of equilibrium without body
force in the cylindrical coordinate system are given by [24]:
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where r and s are the normal and shear stress respectively, and r, h,
and z are the radial, circumferential, and axial coordinate respec-
tively (Figs. 1 and 2).

The relationship of strain and displacement are [24]:
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where u is displacement.

The relationship of strain and stress for transversely isotropic
elastic medium can be represented as [24]:
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where cij are elastic coefficients, and given by
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Here eh, ez and crz are the components of strain. Ev , Eh and G are
Young’s modulus in the vertical direction, Young’s modulus in the
horizontal direction, shear modulus in planes normal to the plane
of transverse isotropy, respectively, lh and lv are Poisson’s ratios
in the horizontal direction and in the vertical direction, respec-
tively. Where the constants n and j are defined as
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By introducing Eq. (2) into Eq. (4), the above stress equation:
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Substituting Eqs. (2) and (4) into Eq. (1), leads to the following
equations:
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The deflection in Eq. (7) can be written as the following in terms
of the modified Love’s displacement function [25]
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Fig. 1. 2-noded axi-symmetric layer element.

Fig. 2. 1-noded half-space element.
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