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a b s t r a c t

In the present work, a new elastic–plastic model is proposed for a class of porous rock-like materials with
two populations of pores at different scales. This model is based on the closed-form plastic criterion
which was established from a nonlinear homogenization procedure in our previous work (Shen et al.,
2014) . This criterion explicitly takes into account the effects of two populations of voids, respectively dis-
tributed at the microscopic and mesoscopic scales. In order to consider the plastic compressibility and
pressure dependency, the solid phase at the microscopic scale is assumed to obey to a Drucker–Prager
criterion. The constitutive model is completed by a non-associated plastic flow rule and an isotropic hard-
ening law, which are defined in a phenomenological way. The proposed model is applied to describe the
macroscopic mechanical behavior of the Lixhe chalk with different confining pressures. Comparisons
between numerical results and experimental data are presented for the verification of the proposed
model.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Most geomaterials are porous media with complex distribu-
tions of pores. Pores of different sizes can be found at various
scales. Take the example of porous chalk. According to some previ-
ous works [20,28,1], two main families of pores can be observed in
these rocks, large pores corresponding to inter-particle voids
between coccolithe grains and intra-particle small pores inside
the coccolithe grains.

The macroscopic mechanical behavior, for instance the elastic
modulus and plastic yield thresholds, are strongly affected by these
two families of pores [10,17,20,4,1]. Due to the presence of pores,
the mechanical behavior of chalk is very sensitive to confining
pressure. Two mechanisms of plastic deformation can be identi-
fied, plastic pore collapse under hydrostatic stress and plastic
shearing under deviatoric stress. A number of phenomenological
constitutive models have been developed for the description of
mechanical behavior of various chalks and we do not intend to give
an exhaustive list of such models. These phenomenological models
are able to reproduce overall mechanical responses of chalk but fail
to explicitly take into account effects of pores. Empirical laws were
generally proposed to reproduce variations of mechanical proper-
ties with porosity.

In order to complete and improve the macroscopic approach,
important efforts have been spent to formulate micromechanics

based constitutive models for porous materials. As a pioneer work,
Gurson [8] proposed an analytical failure criterion based on a limit
analysis approach, for porous metal materials constituted of a von
Mises type solid containing a spherical void. This criterion explic-
itly depends on the porosity of material. Based on this reference
work, a large number of extensions and improvements have been
developed by various authors for different kinds of engineering
materials including rock-like materials. For example, using a
Drucker–Prager type pressure-sensitive criterion for the solid
matrix, Jeong [11]; Guo et al. [7]; Lee and Oung [12]; Durban
et al. [5]; Shen et al. [24] have formulated closed-form plastic
criteria for porous materials whose solid matrix exhibits irre-
versible volumetric compressibility or dilation. On the other hand,
Cazacu and Stewart [3]; Monchiet et al. [15] have taken into
account the tension–compression asymmetry and the anisotropy
of the solid matrix while Gologanu et al. [6]; Pardoen and Hutchin-
son [18]; Monchiet et al. [16] considered the voids shape effects.
Further, the Gurson’s model was adopted by Xie and Shao [30] as
the cap yield locus in their two yield surfaces model. The macro-
scopic criterion derived by Guo et al. [7] was also applied by Lin
et al. [13] to describe plastic deformation of porous rocks.

However, all micro-mechanical models mentioned above con-
sider only one population of pores. In practice, in many rock-like
materials, there exist different families of pores with significantly
different sizes at different material scales. As a consequence, the
effect of porosity on macroscopic behaviors of porous materials
can be different at different scales, in particular when effects of
pore pressure should be considered in future works. There is a need
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to develop micro-mechanical models which are able to consider
multi-scale populations of pores. In the present paper, we are lim-
ited to rock-like materials with two distinct populations of pores at
two different scales. To this end, Vincent et al. [29] succeed to
derive a semi analytical expression of the macroscopic criterion
for porous materials with two populations of pores and a vonMises
solid phase at the microscopic scale. The same material has been
studied in Shen et al. [23]. However, it is found that the obtained
elliptic plastic yield surface does not fit well most experimental
yield stress observed in laboratory tests [10,17,20,30]. Recently, a
closed-form macroscopic criterion has been derived by Shen
et al. [21] for double porous materials whose solid phase obeys
to a Drucker–Prager criterion.

The main objective of the present study is to propose a new
micromechanics based plastic model for a class of porous rock-
like materials with two populations of pores and a pressure sensi-
tive solid phase. For this purpose, a two-step nonlinear homoge-
nization procedure will be proposed. The first step consists of
determining the effective plastic criterion of porous grains with
the effect of small pores by taking advantage of the previous
results [14]. At the second step, a limit-analysis approach will be
developed to formulate the macroscopic yield criterion of porous
rocks taking account the effect of large pores.

The paper is organized as follows. The determination of the
effective plastic yield criterion of porous rock is first presented in
Section 2 based on the previous works of Shen et al. [21]. After
introducing a non-associated plastic potential, the micro-
mechanics based plastic model is completed in Section 3. This
model is then applied to describe the mechanical behavior of the
Lixhe chalk. The performance of the proposed model is finally ver-
ified through comparisons between numerical results and experi-
mental data.

2. Macroscopic criterion of double porous materials

2.1. The problem statement

As mentioned above, a two-step homogenization procedure will
be developed. For this purpose, it is needed to choose an appropri-
ate representation of the micro-structures of double porous mate-
rials. In the present study, for the sake of simplicity, we assume
that both families of pores are of spherical form and randomly dis-
tributed in a solid matrix. Therefore, the representative volume
element (RVE) of the studied porous material is defined in Fig. 1.
At the macroscopic scale, the studied material can be seen as an
equivalent homogeneous material (see Fig. 1a). The inter-particle

pores (large pores) of the double porous medium are found at
the mesoscopic scale. The matrix in Fig. 1b itself is a porous med-
ium which is composed of intra-particle pores (small pores) and
the solid phase at the microscopic scale (Fig. 1c).

The two populations of spherical voids are distributed at two
well separated scales. We denote jXj the total volume of the RVE,
X2 the volume of the large voids at the mesoscopic scale, X1 and
Xm are the domains occupied by the small voids and the solid
phase at the microscopic scale, respectively. With these notations,
the porosity at the microscopic scale (intra-particle pores) f, the
one at the mesoscopic scale / (inter-particle pores) and the total
porosity C at the macroscopic scale can be expressed as:

f ¼ jX1j
jX�X2j ; / ¼ jX2j

jXj ; C ¼ jX1j þ jX2j
jXj ¼ f ð1� /Þ þ / ð1Þ

The problem to be solved here consists first in the formulation of
effective plastic criterion of the porous grains with the micro poros-
ity f in the first step of homogenization and then in the determina-
tion of the macroscopic plastic criterion of the porous material with
considering the meso porosity /.

Based on a hollow sphere as illustrated in Fig. 1b, a macroscopic
yield criterion has been established in Shen et al. [21] for this class
of porous material having two populations of pores at different
scales by using a two-step homogenization procedure. By using
this criterion, a micromechanical model will be developed in this
work which takes into account the effects of intra-particle pores
and the compressibility of the solid phase at the microscale and
the influence of inter-particle pores at the mesoscale. Because
the detail of derivation of the macroscopic yield criterion can be
found in Shen et al. [21], here we briefly recall the main steps to
better understand this criterion. The sign convention of stress
and strain are: tensile stress (strain) is positive whereas compres-
sive stress (strain) is negative.

2.2. Homogenization from microscopic to mesoscopic scale

For most geomaterials, the plastic behavior is generally affected
by the mean stress and exhibits volumetric compressibility or dila-
tancy. In the first homogenization step from the microscopic scale
to mesoscopic scale (see Fig. 1c), the plastic behavior of the solid
phase is here assumed to obey a Drucker–Prager criterion:

Umð~rÞ ¼ ~rd þ Tð~rm � hÞ � 0 ð2Þ
where ~r denotes the local stress in the solid phase, ~rm ¼ tr~r=3 the
mean stress, and ~rd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
~r0 : ~r0

p
the equivalent deviatoric stress with

~r0 ¼ ~r� ~rm1. The symbol ‘‘�” is used in order to make difference

(a) (c)(b)

Fig. 1. The RVE of the studied double porous medium with different scales.
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