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a b s t r a c t

Natural or induced groundwater flow may negatively influence the performance of artificial ground
freezing: high water flow velocities can prevent frozen conditions from developing. Reliable models that
take into consideration hydraulic mechanisms are then needed to predict the ground freezing develop-
ment. For forty years, numerous thermo-hydraulic coupled numerical models have been developed.
Some of these models have been validated against experimental data but only one has been tested under
high water flow velocity conditions. This paper describes a coupled thermo-hydraulic numerical model
completely thermodynamically consistent and designed to simulate artificial ground freezing of a satu-
rated and non-deformable porous medium under seepage flow conditions. On some points, less restric-
tive assumptions than the ones usually used in the literature are considered. As for the constant-porosity
assumption, its validity is verified. The model appears to be well validated against analytical solutions
and a three-dimensional ground freezing experiment under high seepage flow velocity conditions. It is
used to highlight key thermo-hydraulic mechanisms associated with phase change in a porous medium.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Physical processes associated with frozen ground, either natural
or artificial, have been extensively studied (see for example [1,2]).
Perennially or seasonally frozen ground in cold regions are of inter-
est particularly for civil engineers (frost heave, changes in mechan-
ical behavior) and hydrogeologists (redistribution of water). As for
artificial ground freezing, it has a broad range of applications, from
tunnels to landslides stabilization through shaft sinking and con-
tainment of hazardous waste. Especially in the case of artificial fro-
zen ground, natural or induced groundwater flow may have a
strong impact on the development of the frozen conditions. Con-
versely, phase change can affect the water velocity field due to
both the difference in density between liquid water and ice and
the cryo-suction process [3].

These processes explain the motivation to develop models cou-
pling thermal and hydrogeological mechanisms in frozen ground,
since the first model elaborated by [4]. Most of them have been
reviewed by [5–7]. It appears that the differences in theoretical for-
mulation of these models results from the varied backgrounds of
their authors. Typically, the models use different forms of soil

freezing characteristic curve, Clapeyron equation, and thermal
and hydraulic conductivity relationships. A number of these mod-
els have been validated against experimental data. But, to our
knowledge, only the model presented by [8] has been verified for
high water flow velocity conditions, even if some authors such as
[9] use their model for applications submitted to such conditions.
However, high water flow velocities can delay or even prevent
the freezing progress in a ground, since flowing groundwater adds
heat. The effect of such conditions has then to be taken into
account in an appropriate and reliable manner. As a general rule
of thumb, it has been suggested that the whole space between
two freeze pipes may not freeze if the water velocity is greater than
1–2 m/d [2]. Therefore, highly permeable materials combined with
high hydraulic gradients are of particular concern for ground freez-
ing. Two examples can be cited. The first one deals with a tunnel
beneath the Limmat river in Zurich which experienced significant
delays due to the effect of the seepage flow on the closure of the
frozen body. As for the second, it concerns the Fürth subway in
Germany where the effect of the groundwater flow, perpendicular
to the tunnel, could not be neglected for the design of the freezing
system [10].

The main objective of this paper is to present a thermo-
hydraulic (TH) coupled model of a saturated porous medium sub-
ject to freezing and to validate it under conditions of high seepage
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flow velocity. For certain aspects, this model considers more gen-
eral assumptions than the ones commonly presented in the litera-
ture. In particular, the ice pressure is not necessarily assumed
equal to the zero gauge pressure (unlike, for example, [11–13]).
Indeed, after [14], in saturated zones the ice pressure is forced to
be nonzero, unlike in unsaturated zones where ice can grow with-
out resistance for expansion. Moreover, the difference in density
between ice and water is not ignored (unlike, for example,
[8,12]) and thus the excess of liquid pressure caused by volume
expansion during freezing can be simulated. Furthermore, the
model is thermodynamically consistent and, contrary to what is
generally done in the literature, all the governing equations are
redemonstrated so that all the assumptions required to produce
the final model and what they involve are known. The Clapeyron
equation is not needed to express the equilibrium relationship
between temperature and pressure in frozen ground. Instead, the
direct expression of the water and ice Gibbs energies is used.

In the first part of this paper, the theoretical formulation of the
fully coupled model is presented from the basis of thermodynam-
ics, along with the underlying assumptions. Then, the model is ver-
ified against two analytical solutions and the 3D experiment
conducted by [15], which involves high water flow velocities. In
a third part, the validity of the constant-porosity assumption is
verified by investigating the influence of porosity variation on
freezing evolution. Finally, the model is applied to highlight the
principal TH coupled processes associated with ground freezing.

2. Formulation of the thermo-hydraulic model

2.1. Balance equations

2.1.1. Theoretical development of a general form for the macroscopic
balance laws

The subject under study in this paper is a porous medium con-
sidered fully saturated by water and subjected to freezing: it is
constituted by a solid skeleton including empty spaces through
which one or several water phases (liquid water and ice) can circu-
late. In other words, it is constituted of three phases: soil particles,
liquid water and solid water or ice. It is assumed that the water is
totally pure, i.e. that liquid water and ice phases are mono compo-
nent. In particular, the effects of solutes are not taken into consid-
eration. The following section intends to establish the balance
equations governing the thermal and hydraulic behavior of the
porous medium.

Concerning the water phases, each phase is regarded as a
single-component open system exchanging matter with the out-
side. In what follows, the greek letters (a; . . .Þ designate the phases:
a ¼ r for soil particles, a ¼ k for liquid water and a ¼ c for ice.

Each phase occupies a domain Xa and its movement can be
described in an independent way. In particular, one can define
for each particle of a phase its velocity vector v!a at each time t.
Within each phase a, the balance law for a mass density

ua x!; t
� �

, assumed continuous and differentiable, of a global addi-

tive quantity may be written under the general local conservative
form:

@t qauað Þ þ r!: qaua v
!

a þ W
!

a

� �
¼ qau

H
a ;

8ð x!; tÞ 2 Xa � þ ð1Þ

where qa is the phase density, v!a is the velocity of the medium’s

particles, uH
a is a source mass density and W

!
a is a surface flux den-

sity. In what follows, a thermal equilibrium, instantaneously estab-
lished, is assumed between the phases: all phases have the same
temperature T.

The balance laws are gathered in Table 1. The first three are,
from top to bottom: conservation of mass, balance of momentum
and balance of total energy e ¼ jþ u, where r is the symmetric

Cauchy stress tensor, w
!

is the flux density of the rate of heat
received by the domain by conduction through its boundary, and
r is a volumetric density defining a rate of heat supplied to the
domain by the outside. The balance laws of kinetic energy
j ¼ v!� v!=2 and internal energy u were added to Table 1. These
last two laws do not constitute additional laws since they result
directly from the principal balance laws. In addition, for a fluid
phase, i.e. for liquid water and ice here (since it is assumed that
ice is surrounded by liquid water), r can be broken down between
the pressure and the viscous stresses: r ¼ �p1þ f. The balance

law of enthalpy h ¼ uþ p=q may then be written as:

@t qahað Þ þ r! � qaha v
!

a þ w
!

a

� �
¼ ra þ fa : rv!a þ @tpa þ v!a � r!pa

ð2Þ
Eq. (1) must be supplemented by the jump relations associated

with the balance laws at each interface ab between phase a and b:

qauaðv!a� v!abÞþW
!

a

h i
� n!aþ qbubðv!b� v!abÞþW

!
b

h i
� n!b¼�fab;

8ð x!;tÞ2Rab� þ ð3Þ

where Rab is the surface describing the interface ab; v!ab is the

interface’s velocity, n!a is the exterior normal unit vector to phase
a with n!a ¼ � n!b, and fab is the thermodynamic property associ-
ated with the interface. If the surface has no thermodynamic prop-
erties, fab ¼ 0.

The approach adopted by Eqs. (1) and (3) can be labelled as
‘microscopic’, which is almost impossible to apply to practical
engineering applications that need ‘macroscopic’ equations. To
obtain them, the volume averaging method [16] is generally
adopted over a Representative Elementary Volume (REV) of the
porous medium. This method, applied to each phase, assumes that
each macroscopic point x! of the porous medium can be seen as the
superposition of several phases a considered as continuous media.
It can be noted that the REV should be defined as very small com-
pared to the characteristic dimension of the problem, which is the
freeze pipe diameter in our case, in the order of 10cm. For our
problem, it is assumed that the laws that are determined in the
laboratory for a big REV (a few centimeters) still apply. But to
complement the experimental measurements of the medium
properties made at the laboratory, the numerical results also need
to be fit to in situ measurements.

For the volume averaging method, several definitions are
introduced. The volume fraction na of phase a is defined as the
ratio of the volume of the REV part occupied by phase a to the total
REV volume: nað x!; tÞ ¼ dVa=dV. For a quantity uð x!; tÞ defined
over the domain Xð x!Þ, the volumetric average is defined as:

Table 1
Balance equations.

@t qauað Þ þ r! � qaua v
!

a þ W
!

a

� �
¼ qauH

a

Mass density ua Source term uH
a Surface flux density W

!
a

1 0 0
!

v! g! �r
e g!� v!þ r=q �rv!þ w

!

j g!� v!� r : rv!
� �

=q �rv!

u r þ r : rv!
� �

=q w
!
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