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a b s t r a c t

Two finite element approaches are discussed for the analysis of the coupled problems of seepage and
deformation of saturated porous media in the presence of an acceleration field varying in time and space
(e.g. during an earthquake). The equations governing the two phase problem in dynamic regime are
recalled first under assumptions which seem reasonable in the geotechnical context. Then they are cast
into a first finite element form without introducing further assumptions with respect to those adopted in
deriving them. Subsequently, a simplified formulation is presented which requires a reduced number of
nodal variables with respect to the first one. After discussing a time integration scheme, the two
approaches are applied to the solution of a benchmark example and some comparative comments are
presented on their accuracy and on the required computational effort.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The problem discussed here is related to the design of deep
retaining structures, such as diaphragm walls, in seismic regions.
In particular, the case of excavations in granular soils below the
water table is considered.

In these conditions the assessment of the effects of earthquakes
on the stability and deformation of the structure requires the eval-
uation of the dynamic effective stresses and pore pressure that the
saturated soil exerts on it. Note, in fact, that the relatively high
hydraulic conductivity of granular soils rules out the assumption
of undrained conditions sometime adopted in engineering practice
when dealing with cohesive materials.

In relatively simple cases, e.g. gravity retaining walls, this prob-
lem can be tackled through well-established theories such as those
originally proposed by Okabe in 1926 [1] and by Mononobe and
Matsuo in 1929 [2] for the evaluation of the effective pressure,
and by Westergaard in 1933 [3] for estimating the dynamic
increase of water pressure. In more complex conditions, however,
a coupled dynamic analysis of seepage flow and deformation of
the soil skeleton is required.

In quasi static conditions, i.e. under a gravity acceleration field
constant in time and space, broadly accepted numerical

approaches are available for the numerical analysis of seepage
and of the coupled effective stress-flow problem, e.g. [4–6].

When the acceleration field varies with time, e.g. during earth-
quakes, the analysis of seepage becomes less straightforward since
recourse cannot be made anymore to the usual concept of hydrau-
lic head [7,8]. This led, in turn, to various numerical approaches for
dynamic coupled problems that involve different assumptions and
different sets of independent variables [9–12].

The complex mathematical structure of the dynamic two-phase
problem does not permit a straightforward evaluation of the con-
sequences of these assumptions and, hence, makes the choice of
the most appropriate numerical approach somewhat controversial.

Here, a previous study concerning the numerical analysis of
dynamic seepage [13–15] is extended to the coupled two-phase
analysis. This work neglects the possible development of large
strains in the soil mass, which was considered in other works
recently presented in the literature, see e.g. [16,17].

First, the equations governing the dynamic flow of a liquid
within a deformable porous medium are recalled and are coupled
with those governing the deformation of its skeleton. Then they
are re-written in finite element form. These derivations are pre-
sented in some detail to allow the interested reader to follow their
various steps.

On these bases two alternative finite element formulations are
described. The first one does not introduce further assumptions
with respect to those on which the governing equations are based.
In this case the nodal variables consist of the displacements for the
solid phase and of the relative seepage velocity for the liquid phase.
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Note that other formulations presented in the literature, e.g.
[10,12], adopt as independent variables the displacements of both
solid and liquid phases.

The second formulation represents a simplified approach which
reduces the nodal variables to the displacements of the solid phase
only.

An iterative time integration scheme is then outlined for both
formulations and is applied in the solution of a test problem. The
numerical results suggest some observations on the advantages
and drawbacks of the two approaches in term of accuracy and
computational effort.

In the following, the problem is approached considering the sat-
urated porous medium equivalent to two superimposed continua,
referred to as solid and liquid phases. The two phases have the
same volume, which coincides with that of porous medium. This
assumption involves the use of equivalent quantities that will be
defined subsequently.

A matrix notation and an Eulerian approach with a constant
geometry are adopted in this paper. All variables are in general
functions of time t. Upper and lower case bold face letters denote
matrices and column vectors, respectively. A superposed dot and
a superscript T denote time derivative and transpose.

2. Equations governing the seepage flow

The dynamic equations governing the seepage flow of a liquid
within a fully saturated porous skeleton are recalled here introduc-
ing some assumptions that seem reasonable in the geotechnical
context. In particular, a Newtonian pore liquid is considered,
referred to in the following as water, with constant deviatoric vis-
cosity and no volumetric viscosity; this liquid has a constant den-
sity and its volumetric deformation linearly depends on the pore
pressure; isothermal conditions are assumed, thus neglecting the
influence of temperature; the fluid flow is laminar.

Let introduce now the following quantities: vW is the vector
collecting the Cartesian components of the velocity of the water
particles; v represents the discharge velocity of flow in Darcy
sense, which pertains to the liquid phase; _u is the velocity of the
solid phase, which coincides with that of the soil skeleton; wW is
the relative velocity of the water particles with respect to the
skeleton and w is the relative discharge velocity. The following
relationships hold between these variables.

wW ¼ vW � _u; w ¼ v � _u ð1a;bÞ
The relative discharge velocity w depends on the relative veloc-

ity of the water particles wW through the matrix NA of the area
porosities.

w ¼ NAwW ð2Þ
If the principal directions of porosity coincide with the Carte-

sian axes, NA is a 3 � 3 diagonal matrix the entries of which
nAx; nAy and nAz are the ratios between the area of pores and the
total area of the sections normal to the reference axes.

The difficulties met in determining the area porosities suggest
using the volume (or effective) porosity n, which represents the
ratio between the volume of voids and the total volume of a soil
element, and that can be seen as the average value of the area
porosities [7]. Consequently, Eq. (2) becomes.

w ¼ nwW ð3Þ

2.1. Equation of compatibility

The equation of compatibility of the liquid phase relates its
strain rates, collected in vector _eL, to the discharge velocity v

through the same 6x3 differential operator B (see the List of Sym-
bols) that governs the strain–displacement relationship for solids.

_eL ¼ Bv ð4Þ
Considering Eq. (1b), the relationship between the strain rate of

the liquid phase _eL, the relative discharge velocity w and the skele-
ton velocity _u is.

_eL ¼ Bwþ B _u ð5Þ

2.2. Shear stress-shear strain rate relationship

The stresses rL and the strain rates _eL of the liquid phase are
expressed through the following quantities,

p ¼ 1
3
mTrL; sL ¼ rL �mp ¼ I � 1

3
mmT

� �
rL ð6a;bÞ

_eL;vol ¼ mT _eL; _eL ¼ _eL � 1
3
m _eL;vol ¼ I � 1

3
mmT

� �
_eL ð7a;bÞ

where p is the pore pressure (positive if tensile), which coincides
with the volumetric part of the stresses rL; sL is the deviatoric stress
vector; _eL;vol and _eL are the volumetric and deviatoric strain rates; I
is the identity matrix and m is a 6 component vector the entries of
which are equal to 1 if they correspond to normal strains/stresses,
otherwise they vanish.

In a Newtonian liquid, a linear relationship holds between stres-
ses and strain rates which is formally analogous to that relating
stresses and strains for a linearly elastic solid. In the case of solids
the law depends on bulk and shear elastic moduli; in the case of
liquids on bulk and shear viscosities. Since the bulk viscosity is
neglected in the present context, only the deviatoric part of the
law remains.

sL ¼ lLI0 _eL ð8Þ
Here lL is the deviatoric viscosity of the liquid phase and I0 is a

6 � 6 diagonal matrix with entries equal to 2 if they correspond to
normal strains, otherwise they are equal to 1.

Eqs. (8), (7) and (5) lead to the following sL �w relationship,

sL ¼ lLI1 Bwþ B _uð Þ ð9Þ
where

I1 ¼ I0 � 1
3
I0mmT ¼ I0 � 2

3
mmT ð10Þ

Substituting Eq. (9) into Eq. (6b) one obtains.

rL ¼ lLI1ðBwþ B _uÞ þmp ð11Þ

2.3. Conservation of the mass of liquid

If internal sources are neglected, the conservation condition
requires that the liquid phase mass, _m1, accumulated in a unit vol-
ume in a unit time coincides with the difference, _m2, between the
rates of mass entering and leaving it.

_m1 ¼ _m2 ð12Þ
The rate of mass accumulation, _m1, consists of four contribu-

tions. The first one depends on the volumetric strain rate of the
skeleton, _eS;vol, which in turn is a function of its displacement rate _u.

_eS;vol ¼ mTðB _uÞ ð13Þ
Since positive volume strains correspond to a volume increase,

a positive value of _eS;vol involves an increase of the liquid mass
within the volume.
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