
Research Paper

Simulating the Poisson effect in lattice models of elastic continua
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a b s t r a c t

Lattice models provide discontinuous approximations of the displacement field over the computational
domain, which facilitates the modeling of fracture and other discontinuous phenomena. By discretizing
the domain with two-node elements, however, ordinary lattice models cannot simulate the Poisson effect
in a local (intra-element) sense, which is problematic for some types of analyses. Furthermore, such
methods are limited in the range of Poisson ratio values that can be simulated. We present a new
approach to remedy such known, yet underappreciated, shortcomings of lattice models. In this approach,
the Poisson effect is modeled through the introduction of fictitious stresses into a regular lattice.
Capabilities of the new approach are demonstrated through compressive test simulations of homoge-
neous and heterogeneous materials. The simulation results are compared with theory and those of con-
tinuum finite element models. The comparisons show good agreement for arbitrary Poisson ratios
(including m P 1/3) with respect to nodal displacement, intra-element stress, and nodal stress. This form
of discrete method, supplemented by the proposed fictitious measures of stress, retains the simplicity of
collections of two-node elements.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Lattice models are attractive for simulating the fracturing of
various materials, particularly when fracture development is
affected by material structure or other forms of heterogeneity pre-
sent at the scale of discretization. Lattice models are typically
based on a set of nodes and their interconnection via primitive,
one-dimensional (1-D) elements. Such models, which include
some types of particle models, can be viewed as mechanical ana-
logues of the equations of continuum mechanics [1,16,21,31].
The nodes can be arranged in regular or irregular patterns.
Continuum properties are obtained, in an approximate sense,
through appropriate assignments of the element properties. As
described herein, however, lattice models are limited in their abil-
ities to represent local stress conditions, particularly with respect
to the influence of Poisson’s ratio [6,18,12]. Proper representation
of the Poisson effect is an essential ingredient within most rock
mechanics simulations, including those affected by multiaxial
stress conditions or material heterogeneity.

Beginning with the work of Hrennikoff [19], a variety of discrete
methods have been developed to represent continua as collections

of particles or lattice structures. Particle-based methods, including
the discrete element method [9], are used to simulate the interac-
tion of discrete features and their collective influence on the
behavior of geological systems. Micro-mechanical parameters used
in the discrete elements (i.e., springs or bonds between the parti-
cles) can be determined, through calibration with laboratory
results, to represent macroscopic material behavior [38]. Random
particle models are also used to simulate fracture behavior of other
geomaterials such as concrete [4,10]. Macroscopic representation
of the Poisson effect is accomplished by adjusting the ratio of the
average strain between the longitudinal and transverse directions
[10,11]. Lattice models are another means for studying elasticity
and breakdown of a variety of materials and structures
[17,33,22,15]. Global representation of Young’s modulus and
Poisson’s ratio can be obtained by adjusting longitudinal and trans-
verse dimensions, or stiffnesses, of the lattice beam elements
[8,3,36]. Whereas such models simulate the Poisson ratio in a glo-
bal sense, inaccuracies are present at the elemental level, which
can be viewed as an artificial form of heterogeneity that is not pre-
sent in most models constructed from continuum elements.
Moreover, direct linkages between input mechanical parameters
and experimental measurements are difficult to establish for
discrete methods [31].
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The elasticity of discrete methods, without using free parame-
ters, has been studied. Griffiths and Mustoe [16] relate the elastic
constants, Young’s modulus and Poisson’s ratio, and the spring
stiffnesses through an approach based on strain energy density.
Such relations are used herein for comparison purposes. Liu et al.
[25] derive similar relationships to model failure behaviors such
as breaking displacement, shear resistance, and coefficient of fric-
tion. Alternatively, three-node discrete element models have been
developed to accommodate a volumetric constitutive relation. Hori
et al. [18] proposed a discrete-type finite element model based on
the use of discontinuous shape functions for each node. Cusatis and
Schauffert [12] developed an integrated framework between dis-
crete and continuum methods to overcome the disadvantages of
discrete methods. A local representation of both Young’s modulus
and Poisson’s ratio was obtained by a hybrid system, in which a
planar lattice is combined with constant strain triangle finite ele-
ments [6]. Although these discrete approaches accurately repre-
sent the Poisson effect with a set of discrete springs, or in
conjunction with finite elements, the simplicity of two-node ele-
ments (as a means for modeling material breakdown) is compro-
mised. Munjiza [27] developed a combined finite–discrete
element method (FDEM), in which elasticity calculations are based
on continuum finite element methods, and discontinuous behavior
is represented by a discrete method. Whereas the transition from
continuous to discontinuous behavior needs proper attention
[5,29,30,34], FDEM capably simulates both elasticity and failure
processes of geomaterials, as demonstrated through comparisons
with theory and laboratory studies [26,24]. Munjiza et al. [28]
cover several methods that describe physical systems using dis-
crete entities.

This paper calls attention to significant shortcomings of discon-
tinuous (lattice) models with respect to simulating stress condi-
tions within elastic continua. In particular, models constructed
with discrete, two-node, elements do not provide a local represen-
tation of the Poisson effect. Furthermore, such models do not
accommodate the full range of Poisson’s ratio, nor even the range
exhibited by some rocks [14]. A new approach is presented to
address these known, yet underappreciated, shortcomings.
Transverse strains, based on fictitious measures of principal stress
calculated at the nodal points, are iteratively introduced to accu-
rately represent the Poisson effect within a regular lattice. With
the proposed approach, element stiffnesses are based directly on
the material properties (i.e. Young’s modulus and Poisson’s ratio),
such that calibration processes are not necessary. To demonstrate
the accuracy of the proposed approach, simulation results for
homogeneous systems under uniform loading are compared with
both analytical solutions and practical relationships, which have
been widely used to determine the spring constants of discrete
methods. Comparisons are made for intra-element stress, nodal
stress, and nodal displacement. Thereafter, the accurate modeling
of multi-phase systems is demonstrated through comparisons with
finite element results.

2. Modeling of elastic continua: limitations of lattice models

Lattice models are based on discontinuous approximations of
the field variable over the computational domain. This facilitates
the modeling of fracture development and other discontinuous
phenomena. However, there are significant shortcomings of lattice
models with respect to representing local stress conditions. For
example, for the boundary conditions and loading shown in
Fig. 1a, conventional continuum approaches predict uniaxial com-
pressive stress at any point within the domain. All normal stress
components are either compressive or have zero magnitude.
Lateral straining (i.e., the Poisson effect) occurs, in accordance with

theory. Consider a regular truss network, configured as shown in
Fig. 1b and likewise loaded in compression. It exhibits lateral
straining, but only at a fixed proportion of the vertical compressive
strain. Furthermore, the lateral truss elements are in tension,
which disagrees with conventional theories of elasticity. Such truss
networks exhibit vertical cracking when the lateral tension reaches
the prescribed tensile strength of the material. Whereas cracking
parallel to the direction of compressive loading has been observed
during physical testing, such cracking is typically a consequence of
finer-scale material heterogeneity and is more appropriately
related to strain capacity. Moreover, the truss element forces
depend on the orientation of the truss network with respect to
the direction of loading.

By supplementing the truss elements with shear and rotational
stiffnesses, a range of macroscopic Poisson ratio can be simulated.
One such lattice model is presented in the following section. The
macroscopic Poisson ratio can be controlled by adjusting the rela-
tive magnitudes of the axial and shear stiffnesses. However, such
lattice models provide a flawed representation of the Poisson
effect: under uniaxial compressive loading, tension is wrongly
produced in the orthogonal direction.

3. Lattice model formulation

Hereafter, a specific form of lattice model, based on the
rigid-body-spring concept of Kawai [23], is used to discretely rep-
resent elastic continua. This approach has been used to simulate
elasticity and breakdown of a variety of materials [7,13,2]. For a tri-
angular array of nodal points, the lattice geometry is shown in
Fig. 2a. In this study, nodal connectivity is prescribed and remains
constant throughout the analysis: contact modeling used in the
Distinct Element Method (DEM) is not considered. For this 2-D
case, each node has two translational and one rotational degrees
of freedom. Each element ij is composed of a zero-size spring set
that is connected to nodes i and j via rigid links. The spring set is
formed from two axial (normal and tangential) springs, kn and kt,
and one rotational spring, ku, as shown in Fig. 2b. The spring coef-
ficients are assigned according to

kt ¼ a1kn ¼ a1a2E
Aij

hij
; ku ¼ E

Iij

hij
ð1Þ

in which E is the Young’s modulus, Aij is the area of the facet com-
mon to nodes i and j (Fig. 2a), hij is the distance between the same
nodes, and Iij is the second moment of area Aij. By adjusting a1 and
a2, macroscopic modeling of both elastic constants (E and Poisson
ratio, m) is possible.

By equating strain energy densities of an elastic continuum (in
plane stress) and a regular triangular lattice, the spring coefficients
are related to the elastic constants as follows [16]:

kn ¼
Effiffiffi

3
p
ð1� mÞ

; kt ¼
Eð1� 3mÞffiffiffi
3
p
ð1� m2Þ

ð2Þ

where the range of Poisson ratio is limited to �1 < m < 1/3. Similar
formulations can be found elsewhere [20,25] and are widely used
to determine the spring constants of discrete methods. For a partic-
ular value of the Poisson ratio, it is possible to rewrite Eq. (2) in
terms of a1 and a2. For example, for m = 0.2, a1 and a2 become
1.25 and 1.25/3, respectively, which are used herein for comparison
purposes. Whereas strain conditions obtained by Eq. (2) for regular
lattices have been validated, the local stress conditions have not
been discussed [16]. The following section introduces existing pro-
cedures to determine local stress conditions from the lattice struc-
ture, and a new approach to accurately represent the Poisson effect.
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