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a b s t r a c t

Among the various numerical simulating constitutive models for geomaterials, the constitutive models
which formulated within multilaminate framework have an excellent position. The major advantage of
these models is because of its simplicity of working instead of complicated microscopic models such
as discrete particles models and do not have the shortcomings of macroscopic models based on the stress
or strain invariants.

The object of this study is to deal with the problem exists in the present multilaminate models built on
a numerical integration upon 13 sampling points, which both compatibility and equilibrium conditions
are not simultaneously satisfied. To overcome this problem, a logical 17 sampling points of numerical
integration is presented. The obtained results show a good match with experimental tests.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Material compliance matrix as a tensor containing the interrela-
tion between stress/strain components presents material behavior
aspects that may be activated during material deformation. There
are many factors that influence behavior and damaged resistance
of material that mathematically make a compliance matrix as a
fourth-order tensor. It is important to develop a powerful con-
stitutive model for material compliance matrix in order to under-
stand the effects of different factors and their interactions
influencing the material behavior. Therefore, a correct summing
the directional effects up to present all in a compliance matrix
can be significant and important to see their effects and interac-
tions in material behavior.

Multi-phase materials such as concrete consisting of contacts
between grains, paste, moisture and voids are discrete media that
mostly are considered continuum including micro-cracks for ease.
The accurate behavior of such complex materials is to be investi-
gated through micromechanics-based models. The macroscopic
as an overall or averaged behavior of multi-phase materials is
determined not only how discrete grains and other phases are
arranged through medium, but also by what kinds of interactions
are operating among them. To investigate the behavior of these
multi-phase materials based on micro-mechanical concepts,

certainly, the spatial distribution of contact points and orientation
of grains must be identified.

Among the various numerical simulation models, the
multilaminate models have an excellent position. In these models,
instead of presenting constitutive relations in the shape of stress
and strain tensors, the stress and strain vectors, which are in turn
the projections of stress or strain tensors, are used. This method
not only provides a more physical conceptual base, but also leads
to more simple mathematical formulation. On the other hand,
invariant-based continuum macroscopic models lose some of the
important features of material behavior because they are basically
not able to capture and store the data properties in the different
directions around a material point, whereas the multilaminate
models inherently include the directional characteristics of a mate-
rial point.

Multilaminate and microplane are two of the most important
families of micro-mechanic based models. Both frameworks pre-
dict the behavior of the material by considering the response on
several so-called ‘‘integration planes’’ [1]. The basic idea, namely
that of the constitutive material behavior as a relationship between
strain and stress tensors which can be assembled from the behav-
ior of material, on the planes with different orientations within the
material such as slip planes, micro cracks, and particle contacts,
might be traced back to the ‘‘slip theory of plasticity’’ which was
firstly used for modeling the behavior of polycrystalline metals
[2–10]. This theory was soon recognized as the most realistic con-
stitutive model for plastic-hardening metals. It was used in argu-
ments about the physical origin of strain hardening, and was
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shown to allow easy modeling of anisotropy as well as the vertex
effects for loading increment to the side of a radial path in stress
space. The theory was also adapted to anisotropic rocks and soils
under the name multilaminate model [11–19]. There are many
constitutive studies have been made using the multilaminate
framework, with which they formulated a critical state model on
13 independently acting planes to see rotation of principal stress/
strain axes and anisotropy [1,20]. A certain formulations consid-
ered that only the inelastic shear strains (slips), with no inelastic
normal strain, were taking place on what is presented as micro-
plane model [21]. Microplane model showed that the static con-
straint induces unstable localizations of softening into a plane of
one orientation, which makes it very difficult to generalize the
model for post-peak strain-softening damage of quasi-brittle
materials [22–26]. This problem solved to some extent by using
kinematic constraint instead of static constraint, in which the
strain vector on any inclined plane in the material is the projection
of the macroscopic strain tensor. Furthermore, strain localization
as a result of strain concentration in a zone with a limited thick-
ness is an important subject in the prediction of failure and resid-
ual bearing capacity. In [17,27–30], nonlocal approach was
employed for modeling the post-peak behavior of quasi-brittle
materials within multilaminate and microplane models. The main
focus of this paper is to present a logical method of adjusting
multilaminate numerical integration to satisfy compatibility con-
dition, as such, strain localization has not been considered.

The present multilaminate models are built on a numerical
integration upon 13 sampling points, which both compatibility
and equilibrium conditions are not simultaneously satisfied [1,31].
To circumvent this problem a logical 17 sampling points of numeri-
cal integration is presented as ‘‘multiplane’’ model. Validity of the
proposed model is investigated through experimental tests.

2. Conceptual discussion on justifying the need to multiplane
framework

In general continuum mechanics, to define strain distribution at
a point, the components are simply considered on the outer surface
of a typical dx, dy, dz element. This method makes the solution to
be considered uniform and the homogeneous strain distribution
of the nine components over the outer surface of such dx, dy, dz ele-
ment on three perpendicular coordinate axes. There is a further
consideration in addition to the requirement that the displace-
ments of a cemented or granular medium provide due to slip-
page/widening/closing between particles that make a
contribution to the strain in addition to that from the compression
of particles. Consider two neighboring points on either side of the
point of contact of two particles. These two points do not in usual
remain close to each other but describe complex trajectories.
Fictitious average points belonging to the fictitious continuous
medium can be defined which remain adjacent so as to define a
strain tensor. The problem presents itself differently for disordered
particles compared with the ordered sphere of equal sizes. In this
case, small zones, in which there is no relative movement of parti-
cles, may even appear. This can lead to specific behavior such as
periodic instabilities known as slip–stick, creating non-homogene-
ity in strains and displacements.

The effects of non-homogeneity in the mechanical behavior of
non-linear materials are very important and must somehow be
considered. Furthermore, these non-homogeneities are mostly
neglected in mechanical testing because strains and stresses are
usually measured at the boundary of the samples and therefore
have to be considered reasonably within the whole volume.

Solving non-linear problems, the mechanical behavior depends
strongly on the stress/strain path as well as their histories. Upon

these conditions, it may be claimed that the consideration of strain
components along three perpendicular coordinate axes may not
reflect the real historical changes during the loading procedure.
In the most extreme case, the definition of a sphere shape element
dr (instead of dx, dy, dz cube) carrying distributed strain similarly
on its surface can reflect strain components on infinite orientation
at a point when dr tends to zero.

The finite strain at any point in three dimensions by coordinates
(x, y and z) relates to the displacements of the sides of an initial
rectangular-coordinate box with sides of length dx, dy, and dz to
form the three sides of a parallelepiped. This configuration of strain
is established by considering the displacements of the corner
points (x,0,0), (0,y,0), and (0,0,z). This kind of strain approach
leads to define a (3 � 3) strain tensor including six or nine compo-
nents to present the displacement gradient matrix at a node.
Accordingly, any displacement and corresponding gradient have
to be defined as independent components on three perpendicular
coordinate axes.

Figs. 1 and 2 depict a sphere element and a typical deformed
shape of it respectively. Obviously, there is certain history of dis-
placement on any random orientation through the element.
These are abbreviated in only three x, y and z planes, when a
box-shape dxdydz element is employed. To avoid not missing any
directional historical information of strain, a spherical element car-
rying strain components over its surface, as tangent and normal to
the surface must be employed. This form of strain, which certainly
represents a better distribution, includes all directional informa-
tion. Certainly, to obtain the strain components as presented on
planes around box element, strain variation is integrated over the
sphere surface. However, a predefined numerical integration may

Fig. 1. Position of 17 integration points on the unite sphere surface.

Fig. 2. Typical deformed element and orientations.
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