Computers and Geotechnics 68 (2015) 117-127

Contents lists available at ScienceDirect

Computers and Geotechnics

journal homepage: www.elsevier.com/locate/compgeo

Research Paper

A model for gas pressure in layered landfills with horizontal gas collection systems

Shi-Jin Feng^{a,*}, Qi-Teng Zheng^a, Hai-Jian Xie^b

^a Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China ^b Institute of Hydrology and Water Resources Engineering, Zhejiang University, Hangzhou 310058, China

ARTICLE INFO

Article history: Received 31 December 2014 Received in revised form 7 April 2015 Accepted 7 April 2015 Available online 23 April 2015

Keywords: Layered landfill Horizontal well system Analytical techniques Separation of variables Finite integral transforms

ABSTRACT

The recovery and emission of landfill gas (LFG) is an important topic in landfill management. To produce an effective engineering design for an LFG collection system, designers must understand the migration of gas from the waste body to horizontal extraction wells. This paper develops a two-dimensional analytical solution to enable the study of the gas pressure distribution, well pressure and recovery efficiency in layered landfills with horizontal wells. A horizontal layered structure is used to accommodate the non-homogeneity of various municipal solid waste (MSW) aspects with respect to depth, including gas generation, permeability and temperature. The governing equations, subject to boundary and continuity conditions, are solved by using separation of variables and double finite integral transforms. The solution was verified against another analytical solution and a numerical simulation. Subsequently, a sensitivity analysis of single-well model parameters is performed to optimize a double-well system. The results show that a landfill with horizontal collection systems cannot be assumed to be one dimensional with increasing well spacing. Additionally, both the operational vacuum and maximum gas pressure can be reduced through the design of a double- or multiple-well system. Therefore, the proposed solution can be used for the verification of more complex models and the preliminary design of a horizontal well system.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is an extension of an analytical gas flow model developed by Feng and Zheng [1], who used a horizontal layered structure to accommodate the anisotropy and vertical non-homogeneity of municipal solid waste (MSW). The previous study considered the vertical wells and horizontal drains as a slot well, which was only used to properly describe the gas flow toward a combined extraction system. However, certain landfill operators must collect the landfill gas (LFG) before the landfill reaches the final grade. Under such circumstances, the use of a horizontal gas collection system can be an effective solution [2]. Thus, it is necessary to understand the gas migration from the waste body to horizontal extraction wells to enable the effective engineering design of LFG collection systems. And the previous solution is not applicable for such scenario. Generally, landfills with horizontal wells were simplified to be one dimensional (especially for analytical models [2,3]), but the assumption may also not be reasonable under certain conditions. There have been some two-dimensional numerical models [4,5] to describe the leachate recirculation using horizontal wells. Few studies have focused on the scenario of horizontal gas collection systems, and even less by analytical methods.

In this paper, a two-dimensional analytical solution is derived to study the gas flow in layered landfills with horizontal extraction wells. The non-homogeneity of various MSW aspects with respect to depth in gas generation, permeability and temperature can be accommodated by the horizontal layered structure. Arbitrary number of horizontal pipes are installed in each layer with different pumping rates. The governing equations, subject to boundary and continuity conditions, were solved using separation of variables and double finite integral transforms. The solution was verified against another analytical solution and a numerical simulation. Subsequently, the gas pressure distribution, well pressure and recovery efficiency were calculated to investigate the influence of horizontal well spacings and depths, well pumping rates and non-homogeneity of the MSW. Furthermore, a double-well system was optimized based on a sensitivity analysis of the single-well model parameters. The proposed solution can be used for the verification of more complex models and the preliminary design of a horizontal well system.

^{*} Corresponding author at: Department of Geotechnical Engineering, Tongji University, Si Ping Road 1239, Shanghai 200092, China. Tel.: +86 21 65982723; fax: +86 21 65985210.

E-mail address: fsjgly@tongji.edu.cn (S.-J. Feng).

Nomenclature

The following symbols are used in this paper:		
М	number of individual homogeneous layers	
i	integer ranging from 1 to M	
Н	total thickness of the landfill (L)	
L	model width (L)	
Si	LFG generation rate per bulk volume of the <i>i</i> th layer $(ML^{-3}T^{-1})$	
T_i	absolute temperature of the <i>i</i> th layer (K)	
h_i	thickness of the <i>i</i> th layer (L)	
$K_{\rm vi}, K_{\rm hi}$	vertical and horizontal gas permeability of the <i>i</i> th layer, respectively (L ²)	
Ν	number of horizontal pipes in each laver	
i	serial number of horizontal pipes from 1 to N	
x	horizontal ordinate (L)	
Ζ	vertical distance from the top of the landfill (L)	
(x_{ii}, Z_{ii})	coordinates of the <i>i</i> th horizontal pipe in the <i>i</i> th layer (L)	
Q _{ii}	pumping rate of the <i>i</i> th horizontal pipe in the <i>i</i> th layer	
1.9	$(ML^{-1}T^{-1})$	
θ_{α}	gas content	
ť	time (T)	
p _i	absolute gas pressure of the <i>i</i> th layer ($ML^{-1}T^{-2}$)	
••		

2. Mathematical model

When focusing on gas migration in MSW landfills, the multi-field coupling effect can be simply reflected in the horizontal layered structure [1,3]. A schematic of this two-dimensional flow system is shown in Fig. 1. The landfill was divided into *M* individual homogeneous layers, each having its own LFG generation rate per bulk volume s_i (kg m⁻³ s⁻¹), temperature T_i (K), vertical gas permeability K_{vi} (m²) and horizontal gas permeability K_{hi} (m²). For each layer, *N* horizontal pipes are installed at the coordinates (x_{ij}, z_{ij}) with pumping rates q_{ij} (kg m⁻¹ s⁻¹). The subscript *i* indicates the different layers from top to bottom, and *j* is the serial number of the horizontal pipes (j = 1, 2, ..., N). The total thickness of the landfill is *H* (m), and the model width is *L* (m). If *N* = 1 and $x_{i1} = L/2$, *L* can be called the horizontal well spacing.

In this study, the LFG was assumed to behave as an ideal gas with constant gas content and dynamic viscosity, and LFG transport can be described by Darcy's law neglecting gravitational effects [3,6–8]. The diffusional flow was neglected because it does not have an appreciable impact on gas pressure predictions [9]. The delta function (δ) was used here to model the effects of pumping from horizontal pipes [6]. Thus, considering vertical [2,3] and horizontal [1,6] transport of LFG in a homogeneous waste layer, the governing equation of mass conservation can be written as

$$\frac{\partial}{\partial t} \left(\frac{\theta_{g} p_{i}}{R_{g} T_{i}} \right) = \frac{\partial}{\partial x} \left(\frac{K_{hi} p_{i}}{\mu R_{g} T_{i}} \frac{\partial p_{i}}{\partial x} \right) + \frac{\partial}{\partial z} \left(\frac{K_{vi} p_{i}}{\mu R_{g} T_{i}} \frac{\partial p_{i}}{\partial z} \right) \\ + \left[s_{i} - \sum_{j=1}^{N} q_{ij} \delta(x - x_{ij}) \delta(z - z_{ij}) \right],$$
(1)

where θ_g is the gas content of the waste (volume of gas per bulk volume); *t* is the time (s); p_i is the absolute gas pressure of the *i*th layer (Pa); R_g is the gas constant (277 J kg⁻¹ K⁻¹); μ is the dynamic viscosity of the LFG (1.37×10^{-5} kg m⁻¹ s⁻¹); *x* is the horizontal ordinate (m); and *z* is the vertical distance measured from the top of the landfill (m).

Additionally, the gas-flow within the landfill was assumed to be a steady-state process because the time required for the layer to respond to changes in the gas generation rate should be

Ro	gas constant ($L^2 T^{-2} K^{-1}$)
น้	dynamic viscosity of gas $(ML^{-1}T^{-1})$
, k;	degree of <i>i</i> th layer anisotropy $(K_{\rm bi}/K_{\rm vi})$
7: 1 7:	top and bottom vertical coordinates of the <i>i</i> th laver
<i>≈l</i> −1, <i>≈l</i>	respectively (I)
$\mathbf{D}_{\mathbf{v}}(\mathbf{v})$	P(x) gas pressure at $z = z$, and z , respectively
$r_{i-1}(x),$	$(ML^{-1}T^{-2})$
Datm	atmospheric pressure $(ML^{-1}T^{-2})$
1 a 11:	new function $(M^2 L^{-2} T^{-4})$
m	integer ranging from 0 to infinity
n	integer ranging from 1 to infinity
2	separation constants (I^{-2})
λ _m	integration parameters ($MI^{-1}T^{-2}$)
u_{im}, D_{im}	$\frac{1}{1} = \frac{1}{1} = \frac{1}$
α_m, β_{in}	$\alpha_m = m\pi/L$ and $\beta_{in} = n\pi/n_i (L^{-1})$
Ĵ _{zi}	vertical gas flux for the <i>i</i> th layer $(ML^{-2}T^{-1})$
Lo	potential LFG generation capacity (ML ⁻³)
<i>C</i> ′	degradation rate constant (T ⁻¹)
е	void ratio
S_1	liquid saturation
$abs(\Lambda p)$	gas pressure difference between the two- and
(- F)	one-dimensional models ($ML^{-1}T^{-2}$)

Fig. 1. The schematic of the two-dimensional gas flow system.

considerably less than that required for significant changes in the gas generation rate to be realized [2]. Thus, Eq. (1) can be rewritten as

$$k_{i}\frac{\mathrm{d}}{\mathrm{d}x}\left(p_{i}\frac{\mathrm{d}p_{i}}{\mathrm{d}x}\right) + \frac{\mathrm{d}}{\mathrm{d}z}\left(p_{i}\frac{\mathrm{d}p_{i}}{\mathrm{d}z}\right) + \frac{\mu R_{\mathrm{g}}T_{i}}{K_{\mathrm{v}i}}\left[s_{i} - \sum_{j=1}^{N}q_{ij}\delta(x - x_{ij})\delta(z - z_{ij})\right] = 0,$$
(2)

where

$$k_i = \frac{K_{\rm hi}}{K_{\rm vi}}.$$
(3)

The boundary conditions for each layer are as follows:

$$\frac{\mathrm{d}p_i}{\mathrm{d}x}(0,z) = 0, \quad \frac{\mathrm{d}p_i}{\mathrm{d}x}(L,z) = 0, \quad \text{at } z_{i-1} \leqslant z \leqslant z_i, \tag{4a}$$

$$p_i(x, z_{i-1}) = P_{i-1}(x), \ p_i(x, z_i) = P_i(x), \quad \text{at } 0 \leqslant x \leqslant L, \tag{4b}$$

Download English Version:

https://daneshyari.com/en/article/254619

Download Persian Version:

https://daneshyari.com/article/254619

Daneshyari.com