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a b s t r a c t

In this paper a locally mass conservative finite volume method is employed to model the one-dimen-
sional, two-phase immiscible flow in a poroelastic media. Since, an appropriate choice of primary vari-
ables is critical in simulating multiphase subsurface flow, depending on such a choice, the governing
equations can be expressed in different forms. By implementing Picard iteration to a highly nonlinear sys-
tem of equations, three numerical models including pressure form, mixed form and mixed form with a
modified Picard linearization are developed in this study. These models have been evaluated in terms
of stability, convergence and mass conservation in various one-dimensional test cases. Selecting water
saturation in the mixed form as a primary variable, which is not frequent in the geotechnical engineering,
could produce convergence problems in transition from saturated to unsaturated regimes, but in other
conditions show good convergence and also mass balance properties. The pressure form and the mixed
form with a modified Picard linearization converge in all test cases even near the fully saturated condi-
tions. The pressure form suffers from poor mass balance and the mixed form with a modified Picard lin-
earization poses superior mass balance property than the pressure form. In order to solve the coupled
multiphase flow and geomechanics, two coupling strategies are used, first the fully coupled approach
and second the iterative algorithm based on the fixed-stress operator split. Comparison between the total
number of iterations and the total execution time of the fully coupled method and the fixed-stress
schemes are presented through different one-dimensional examples. The accuracy, robustness and effi-
ciency of the fixed-stress method have been demonstrated due to the reduced CPU time and low values
of error for different variables.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The coupling between multiphase flows and geomechanics is of
significant interest in a diverse range of engineering fields. In reser-
voir engineering, examples of applications include land subsi-
dence, hydraulic fracturing, wellbore instability, casing damage
and sand production [1]. Within the field of environmental engi-
neering, soil contamination problems caused by the release of pet-
roleum hydrocarbons and immiscible industrial wastes are highly
nonlinear and challenging to be solved [2–4] and in some cases
they may require a coupled hydro-mechanical analysis in deform-
able subsystems [5,6]. Moreover, consolidation of partially saturat-
ed soils and land settlement due to groundwater pumping are
problems of considerable concern in soil mechanics and geotechni-
cal engineering in which coupled simulators are needed [7–11].

To describe multiphase subsurface flow, an appropriate choice
of primary variables is critical in simulating the resulting nonlinear
system [12,13]. Depending on such a choice, the governing
equations can be expressed in different forms. In the context of
multiphase flow, the basic formulations involve the pressure and
the saturation of the fluid phases. For these two types of
unknowns, the formulations can be derived as: ‘‘the pressure form’’
in which the state variables are the fluid pressures, ‘‘the saturation
form’’ where the saturation of the fluid phases set as primary vari-
ables and ‘‘the mixed form’’ in which both pressure and saturation
appear as unknowns [14]. Since, it is infeasible to model the
saturated regions with the saturation form of flow equations, this
approach is not well adopted. Also, because of the assumption of
the deforming porous media, the solid skeleton displacement is
set as the third independent variable. For the mixed form, Li [15]
and Li et al. [16] developed a model based on state variables
including degree of water saturation, pore water pressure and solid
displacement for the water–oil and water–air systems, respective-
ly. In Ref. [17], formulations based on gas pressure, water
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saturation and displacement as primary variables have been pro-
posed in a water and gas system. For the pressure form, in
[6,9,18–20] the pressures of the wetting and non-wetting phase
act as basic variables, while in [13,21–23] capillary pressure is
one of the related primary variables. Comparative studies on
selecting primary variables in the case of a rigid porous media
has been discussed in the literature [14,24–28]. Numerical simula-
tion based on pressure form, provides unique and continuous solu-
tion. Models of this type could be used in both unsaturated and
saturated zones, but the method suffers from poor mass balance
[14,24,26]. In contrast, mixed form achieves a better mass balance.
Also, in [14] the mixed form of multiphase flow has been linearized
with a modified Picard iteration which results in excellent mass
balance accuracy.

In the cases where solid deformation is involved, due to the
above mentioned advantages the pressure form has been exten-
sively used. In [29] the mass conservation errors have been exam-
ined for the coupled geomechanics and multiphase flow for two
problems in water–oil reservoir. Since, in modeling multiphase
flow in a deformable porous media, most attention has been paid
to stability and convergence properties and in comparison little
effort has been directed to mass conservation analysis, in this
research a detailed comparative study has been performed on this
aspect alongside of the stability and convergence criteria.

Due to the highly nonlinear nature of the governing system of
equations, numerical discretization should be implemented. Dif-
ferent spatial techniques have been used to solve the coupled
equations. The finite element method is the most popular in soil
consolidation problems and geotechnical engineering [6–
9,11,13,18,20,22,23,30]. Despite advantages of this method in deal-
ing with complex geometries and unstructured grids, numerical
instabilities can occur for the standard finite element when strong
pressure gradients appear [31–34]. The other numerical method
which is widely used in the reservoir problems is finite volume
method (FVM). This computational scheme preserves local conser-
vation and is capable of capturing more accurate solution for
heterogeneous material and especially at the discontinuities, as
illustrated in [35]. In [31], the finite volume method has been
employed for discretization of the two-phase flow and the nodal
based finite element scheme for the mechanical equation. The pro-
posed model has been verified for the water-flooding problem in
an oil reservoir. Also, in [36,37], finite volume method has been
used to solve the Richards equation in a rigid soil. Because of the
advantages of the FVM in local conservation at the element level
and eliminating pressure oscillations, this approach has been
implemented in this study to solve the coupled hydro-mechanical
problem.

In order to solve the hydro-mechanical coupled set of equations,
two strategies can be used, first the fully coupled approach and
second the sequential algorithm [35,38–40]. There are several
types of sequential methods based on the different degrees of cou-
pling which can be categorized into iteratively, explicit and loosely
coupled schemes [35,38–40]. In a fully coupled fashion, one matrix
system is built to solve simultaneously the equilibrium equation
and the continuity equations for the immiscible flowing fluids
[17,30,41–44]. Despite the stability and convergence properties
of this scheme, computational cost is the issue which may make
the algorithm inefficient. In contrast, by using sequential strate-
gies, computational speed will improve, while accuracy, stability
and convergence properties are affected. Among the sequential
schemes, the iteratively coupled with tight convergence criteria
provide higher accuracy which also has the flexibility and modu-
larity properties of the staggered schemes [29,35,45,46]. In this
approach, the coupled system of equations is split into two sub-
problems, which are the geomechanical equilibrium and the mass
balance equations of the fluid phases. The data exchange is

performed iteratively between these two portions at each time
step until convergence is achieved. To overcome convergence
problems which the sequential schemes deal with, different opera-
tor splits, namely, drained, undrained, fixed-strain and fixed-stress
splits, have been proposed [35,46–48]. Stability analysis indicates
that among these operator splits, fixed-stress split is uncondition-
ally stable for the backward Euler time discretization, even in an
incompressible system [31,46,48] and takes less number of itera-
tions to converge [35,48]. In this method the flow equations are
solved first by freezing the time-variation of the volumetric stress
[31,46,48]. This method has been addressed in this paper to solve
the coupled system of equations. The other sequential schemes
including explicit and loosely coupled suffer from low accuracy
[35] and are not included in this research.

The objectives of this study are to compare different forms of
the multiphase flow in poroelastic media including pressure form,
mixed form and mixed form with a modified Picard linearization in
terms of stability, convergence and mass conservation, in the con-
text of FVM. Moreover, two coupling methods of fully coupled and
iteratively coupled are presented for the coupled multiphase flow
and geomechanics in the presence of capillarity and the accuracy
and efficiency of these two schemes are analyzed. To authors’
knowledge this work is the first systematic comparative study of
mathematical formulations and numerical coupling strategies for
two-phase flow in deforming porous media.

Mathematical models for coupled multiphase flow and geome-
chanics, based on the different sets of primary variables are derived
in Section 2. In Section 3, the finite volume formulations of differ-
ent forms of the governing equations are generated and then, the
coupling strategies are illustrated. Numerical results and compar-
isons are presented in Section 4, and some conclusions are drawn
at the end.

2. Mathematical formulations and governing equations

The full dynamic behavior of multiphase systems based on
averaging theories and a classical point of view on Biot’s theory
is developed in [7]. Since throughout this paper the numerical
solution of the resulting governing equations is dealt with, the
mathematical model using Biot’s theory has been presented. In this
physical approach, the mass balance equation for the solid phase
can be written as [7]

@ð1� nÞqs

@t
þ div 1� nð Þqsvsð Þ ¼ 0 ð1Þ

where n is the porosity of the medium, qs is the density of the solid
phase, t is time and vs is the solid phase velocity. Also the mass con-
servation equation for each fluid phase can be expressed as follows

@ðnSaqaÞ
@t

þ div nSaqavað Þ ¼ 0 ð2Þ

where Sa; qa and va are the degree of saturation, density and abso-
lute velocity of the fluid phase a, respectively. To formulate final
forms of continuity equations, the time derivative of the above
equations are expanded and then Eq. (1) divided by qs, is added
to Eq. (2) divided by Saqa. By introducing relative velocities of flow-
ing phases with respect to the solid phase as vas ¼ va � vs and the
material time derivative as D �ð Þ

Dt ¼
@ �ð Þ
@t þ div �ð Þ: vs, we have [7]:

ð1� nÞ
qs

Dqs

Dt
þ div vs þ

n
qa

Dqa

Dt
þ n

Sa

DSa

Dt
þ 1

Saqa
div nSaqavasð Þ

¼ 0 ð3Þ

By considering the solid and fluid phases as compressible, constitu-
tive relationships for the material time derivatives of the densities
of these phases are needed for the case of isothermal condition.

18 R. Asadi, B. Ataie-Ashtiani / Computers and Geotechnics 67 (2015) 17–32



Download English Version:

https://daneshyari.com/en/article/254640

Download Persian Version:

https://daneshyari.com/article/254640

Daneshyari.com

https://daneshyari.com/en/article/254640
https://daneshyari.com/article/254640
https://daneshyari.com

